CVODE User Guide

Scott D. Cohen
Alan C. Hindmarsh
Lawrence Livermore National Laboratory

Numerical Mathematics Group

UCRL-MA-118618
September 1994

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor the University of California nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or the University of California, and shall not be used for advertising or product endorsement purposes.

CVODE User Guide

Scott D. Cohen Alan C. Hindmarsh

September 1994

Contents

1 Introduction 1
1.1 Historical Background 1
1.2 Mathematical Setting 1
1.3 Reading This User Guide 3
2 Usage of CVODE 4
2.1 Overview 4
2.2 Usage Summary 6
3 Dense Solver Sample Program 9
4 Band Solver Sample Program 15
5 Krylov Solver Sample Program 22
6 CVODE Linear Solvers 33
6.1 Direct Methods 33
6.1.1 CVDENSE 33
6.1.2 CVBAND 35
6.1.3 CVDIAG 36
6.2 Iterative Methods 37
6.2.1 CVSPGMR 37
7 Types real and integer 39
7.1 Description 39
7.2 Changing Type real 39
7.3 Changing Type integer 40
8 Demonstration Programs 41
8.1 Direct Demonstration Program, cvdemd.c 41
8.2 Krylov Demonstration Program, cvdemk.c 41
9 Overall Structure 42
10 Reference Guide 47
10.1 Main CVODE Integrator 47
10.1.1 Options 47
10.1.2 The Right Hand Side Function, Type RhsFn 48
10.1.3 CVodeMalloc 48
10.1.4 CVode 50
10.1.5 CVodeDky 51
10.1.6 CVodeFree 52
10.1.7 Optional Inputs and Outputs 52
10.2 CVODE Linear Solvers 54
10.2.1 CVDENSE 54
10.2.1.1 CVDense 54
10.2.1.2 Type CVDenseJacFn 54
10.2.1.3 Statistics 56
10.2.2 CVBAND 56
10.2.2.1 CVBand 56
10.2.2.2 Type CVBandJacFn 57
10.2.2.3 Statistics 58
10.2.3 CVDIAG 59
10.2.3.1 CVDiag 59
10.2.3.2 Statistics 59
10.2.4 CVSPGMR 60
10.2.4.1 CVSpgmr 60
10.2.4.2 Type CVSpgmrPrecondFn 61
10.2.4.3 Type CVSpgmrPSolveFn 63
10.2.4.4 Statistics 64
10.3 Generic Packages 64
10.3.1 VECTOR 65
10.3.1.1 Type N_Vector 66
10.3.1.2 N_Vector Accessor Macros 66
10.3.1.3 N_Vector Kernels 67
10.3.1.3.1 Memory Allocation and Deallocation 67
10.3.1.3.2 Arithmetic 68
10.3.1.3.3 Measures 70
10.3.1.3.4 Miscellaneous 71
10.3.1.3.5 Debugging Tools 71
10.3.2 DENSE 72
10.3.2.1 Type DenseMat 73
10.3.2.2 DenseMat Accessor Macros 73
10.3.2.3 DenseMat Functions 74
10.3.2.4 Small Dense Matrix Functions 75
10.3.3 BAND 78
10.3.3.1 Type BandMat 79
10.3.3.2 BandMat Accessor Macros 80
10.3.3.3 BandMat Functions 82
10.3.3.4 Small Band Matrix Functions 82
10.3.4 SPGMR 86
References 87
Index 88
List of Figures
1 Diagram of the user program and CVODE package 5
2 Overall structure diagram of the CVODE package 43
3 Diagram of the storage for a band matrix of type BandMat 81

List of Tables

1 List of files in CVODE package . 45
2 List of vector kernels and usage by CVODE code modules 46

1 Introduction

1.1 Historical Background

CVODE is a solver for stiff and nonstiff initial value problems for systems of ordinary differential equation (ODEs). It is written in C, and based on two older ODE solvers written in Fortran.

Fortran solvers for ODE initial value problems are widespread and heavily used. Two solvers that have been written at LLNL in recent years are VODE [1] and VODPK [3]. VODE is a general purpose solver that includes methods for stiff and nonstiff systems, and in the stiff case uses direct methods (full or banded) for the solution of the linear systems that arise at each implicit step. Externally, VODE is very similar to the well known solver LSODE [4]. VODPK is a variant of VODE that uses a preconditioned Krylov (iterative) method for the solution of the linear systems. VODPK is a powerful tool for large stiff systems because it combines established methods for stiff integration, nonlinear iteration, and Krylov (linear) iteration with a problem-specific treatment of the dominant source of stiffness, in the form of the user-supplied preconditioner matrix [2]. The capabilities of both VODE and VODPK have been combined in the C-language package CVODE.

In addition to translating the VODE and VODPK algorithms into C, we have reorganized the overall algorithm considerably. One key feature of the CVODE organization is that the linear system solvers comprise a layer of code modules that is separated from the integration algorithm, allowing for easy modification and expansion of the linear solver array. A second key feature is a separate module devoted to vector operations; this will facilitate the planned extension of CVODE to multiprocessor environments with minimal impacts on the rest of the solver.

There are several motivations for choosing the C language for CVODE. First, a general movement away from Fortran and toward C in scientific computing is apparent. Second, the pointer, structure, and dynamic memory allocation features in C are extremely useful in software of this complexity, with the great variety of method options offered. Finally, we prefer C over C ++ for CVODE because of the wider availability of C compilers, the potentially greater efficiency of C, and the greater ease of interfacing the solver to applications written in extended Fortran.

1.2 Mathematical Setting

An ODE initial value problem can be written as

$$
\begin{equation*}
\dot{y}=f(t, y), \quad y\left(t_{0}\right)=y_{0}, \quad y \in \mathbf{R}^{N} \tag{1}
\end{equation*}
$$

where \dot{y} denotes the derivative $d y / d t$. This problem is stiff if it contains one or more strongly damped modes (i.e. the Jacobian matrix $J=\partial f / \partial y$ has an eigenvalue with large negative real part). The underlying integration methods used in CVODE are variable-coefficient forms of the Adams and BDF (Backward Differentiation Formula) methods. The numerical solution to (1) is generated as discrete
values y_{n} at time points t_{n}. The computed values y_{n} obey a linear multistep formula

$$
\begin{equation*}
\sum_{i=0}^{K_{1}} \alpha_{n, i} y_{n-i}+h_{n} \sum_{i=0}^{K_{2}} \beta_{n, i} \dot{y}_{n-i}=0 \tag{2}
\end{equation*}
$$

Here the \dot{y}_{n} are computed approximations to $\dot{y}\left(t_{n}\right), h_{n}=t_{n}-t_{n-1}$ is the stepsize, and $\alpha_{n, 0}=-1$. For use on nonstiff problems, the Adams-Moulton formula is characterized by $K_{1}=1$ and $K_{2}=q$, and the order q varies between 1 and 12. For stiff problems, the BDF formula has $K_{1}=q$ and $K_{2}=0$, and the order q varies between 1 and 5 . In either case, the nonlinear system

$$
\begin{equation*}
G\left(y_{n}\right) \equiv y_{n}-h_{n} \beta_{n, 0} f\left(t_{n}, y_{n}\right)-a_{n}=0, \quad \text { where } \quad a_{n} \equiv \sum_{i>0}\left(\alpha_{n, i} y_{n-i}+h_{n} \beta_{n, i} \dot{y}_{n-i}\right) \tag{3}
\end{equation*}
$$

must be solved (approximately) at each time step. In the nonstiff case, this is usually done with simple functional (or fixed point) iteration. In the stiff case, the solution of (3) is usually done with some variant of Newton iteration. This requires the solution of linear systems of the form

$$
\begin{equation*}
M\left[y_{n(m+1)}-y_{n(m)}\right]=-G\left(y_{n(m)}\right) \tag{4}
\end{equation*}
$$

where M is an approximation to the Newton matrix $I-h \beta_{n, 0} J$ and $J=\partial f / \partial y$ is the ODE system Jacobian. The linear systems arising in the Newton iteration are solved by either a direct or an iterative method. The direct solvers currently available in CVODE include dense (full) and banded methods, and a diagonal approximate Jacobian method. The iterative method is the Generalized Minimal Residual method [5], or GMRES. With scaling and preconditioning included, we refer to this method as SPGMR.

The estimation and control of errors is an extremely important feature of any ODE solver. In CVODE, local trunctation errors in the computed values of y are estimated, and the solver will control the vector e of estimated local errors in accordance with a combination of input relative and absolute tolerances. Specifically, the vector e is made to satisfy an inequality of the form

$$
\begin{equation*}
\|e\|_{W R M S, e w t} \leq 1 \tag{5}
\end{equation*}
$$

where the weighted root-mean-square norm $\|v\|_{W R M S, w}$ with weight vector w is defined as

$$
\|v\|_{W R M S, w}=\sqrt{\frac{\sum_{i=1}^{N}\left(v_{i} w_{i}\right)^{2}}{N}}
$$

The CVODE error weight vector ewt has components

$$
e w t_{i}=\frac{1}{R T O L \cdot\left|y_{i}\right|+A T O L_{i}}
$$

where the non-negative relative and absolute tolerances $R T O L$ and $A T O L$ are specified by the user. Here $R T O L$ is a scalar, but $A T O L$ can be either a scalar or a vector. The local error test (5) controls the estimated local error e_{i} in component y_{i} in such a way that, roughly, $\left|e_{i}\right|$ will be less than $e w t_{i}^{-1}=R T O L \cdot\left|y_{i}\right|+A T O L_{i}$. The local error test passes if in each component the absolute error $\left|e_{i}\right|$ is less than or equal to $A T O L_{i}$, or the relative error $\left|e_{i}\right| /\left|y_{i}\right|$ is less than or equal to $R T O L$. Use $R T O L=0$ for pure absolute error control, and $A T O L_{i}=0$ for pure relative error control. Actual (global) errors, being an accumulation of local errors, may well exceed these local tolerances, so choose $R T O L$ and $A T O L$ conservatively.

1.3 Reading This User Guide

This user guide is a combination of general usage instructions and specific example programs. We expect that some readers will want to concentrate on the general instructions, while others will refer mostly to the examples, and the organization is intended to accommodate both styles.

In Section 2, we begin with a short overview of the usage of CVODE. Readers can then either read the more detailed usage description that follows, or skip to the example programs.

The subsequent sections contain three sample programs that illustrate the usage of CVODE with different choices of the linear system solvers. The examples include the use of the dense solver, the band solver, and the SPGMR solver, in Sections 3, 4, and 5, respectively. Each of these sections is self-contained. In each case, we give the program source, a step-by-step explanation of the program, and the output. Our intention is that these programs will enable the user to learn CVODE by example, and each can serve as a template for user programs.

Section 6 describes in more detail the call that the user must make to select a linear system solver, and gives a brief summary of the CVODE linear solvers currently available. Section 7 describes the integer and real data types used in CVODE, and how those can be altered to accomodate different precisions.

Section 8 describes a pair of "demonstration programs" that are also provided with the package. These can be viewed as illustrations of the use of CVODE, but, more importantly, provide a means of checking the validity of the installed package.

In Section 9 we give a brief description of the overall organization of the CVODE package, together with short descriptions of the files in it.

Most of this user guide is taken up with the reference guide given in Section 10. It contains full documentation for all functions, macros, types, enumerations, etc. that the user needs to use CVODE. Keep the reference guide handy when writing or modifying your code, so that you can easily look up things like exact function names, and the meaning and ordering of parameters. Throughout the user guide, the reader is referred to sections in the reference guide for "full details" on the usage of CVODE.

Finally, the reader should be aware of a couple of notational issues in this user guide. Program listings and identifiers (such as CVodeMalloc) within textual explanations appear in typewriter type style, and packages or modules, such as CVDENSE, are written in all capitals. The one exception is the CVode main integrator module (CVODE is reserved for the name of the entire software package). Thus, for example, we write the identifier CVode for the function that is part of the CVode integrator module within the CVODE software package.

2 Usage of CVODE

In this section we describe the usage of CVODE at two levels. First we give a brief overview. This overview is sufficient for an understanding of the sample programs given in the following sections, and therefore the reader may want to skip to those sections. The remainder of this section is a more detailed summary of usage. Even that description omits some of the usage details. However, both in this section and in the descriptions of the sample programs, we refer to later sections for complete information on CVODE usage.

2.1 Overview

A high-level view of the combined user program and CVODE package is shown in Figure 1. It shows the user's program and the various CVODE modules. The user's program has the following essential parts:

- \#include lines to access CVODE header files;
- allocation and loading of CVODE inputs, including the input y of type N_Vector (allocated with N_VNew);
- a call to CVodeMalloc to allocate memory for CVODE;
- if Newton iteration is selected, a call to one of CVDense, CVBand, CVDiag, or CVSpgmr, to specify which linear system module is to be used;
- a loop of calls to CVode for integration to prescribed output points;
- a call to CVodeFree to free all CVODE memory;
- freeing of user-allocated memory when the integration is done, e.g. freeing y with N_VFree;
- the user-supplied function f defining $f(t, y)$; and
- either an optional user-supplied function Jac for a Jacobian approximation or a pair of usersupplied routines, Precond and PSolve, for preconditioning of the Krylov method.

This list includes the user-supplied functions that define the ODE problem and its Jacobian (or approximation, as needed), and it includes calls to certain CVODE functions to carry out the solution. The list also includes items that deal with two other aspects of the CVODE user interface: One is the selection of a linear system solver for use in the stiff case. The other deals with CVODE vector; all vectors of length N, such as y, are communicated as objects of type N_Vector, a type defined with the CVODE package.

With this overview, the reader may find it more instructive at this point to skip to the sample programs in the following three sections. There most of the necessary usage details not shown above are covered in the programs and the accompanying explanations. However, for the sake of completeness, we give also the following summary of the general usage instructions.

CVODE Linear Solvers

VECTOR
vector.h, vector.c
$\mathrm{N}_{-} \operatorname{VNew}(\ldots)\{\ldots\}, \mathrm{N}_{-} \operatorname{VFree}(\ldots)\{\ldots\}, \mathrm{N}_{-} \operatorname{VIth}(\ldots)\{\ldots\}, \mathrm{N}_{-} \operatorname{VDATA}(\ldots)\{\ldots\}$

Figure 1: Diagram of the user program and CVODE package

2.2 Usage Summary

A program which uses CVODE must include certain CVODE header files, make calls to the CVODE solver functions, and define the problem through user-supplied functions. We summarize these features in turn, below.

To begin with, the calling program should also contain the following \#include lines, in order to gain access to various constants, macros, and function prototypes:

```
#include "llnltyps.h" /* for types real, integer, bool; constants TRUE, FALSE */
#include "llnlmath.h" /* for power functions, MIN, MAX, ABS, SQR, RSqrt */
#include "cvode.h" /* for function prototypes and constants */
#include "vector.h" /* for definitions of N_Vector type and macros */
```

For details on the types real and integer, see Section 7, and for detailed contents of vector.h, see Section 10.3.1. For documentation of the functions in the LLNLMATH module, see the file llnlmath.h.

In addition, the calling program should contain \#include lines for one or more header files associated with the linear system solver selected, namely:

```
#include "cvdense.h" /* for the CVDENSE case */
#include "cvband.h" /* for the CVBAND case */
#include "cvdiag.h" /* for the CVDIAG case */
#include "cvspgmr.h" /* for the CVSPGMR case */
#include "dense.h" /* for use of the generic dense matrix routines */
#include "band.h" /* for use of the generic band matrix routines */
```

Generic solver modules called DENSE, BAND, and SPGMR may also need to be accessed by the CVODE user. Details on these generic solvers appear in Sections 10.3.2, 10.3.3, and 10.3.4, respectively.

The calling program itself must call four different functions (three if functional iteration is chosen instead of Newton). These are summarized as follows:

- CVodeMalloc allocates memory for the main CVODE integrator, initializes certain data, and returns a pointer to the CVODE memory structure;
- If Newton iteration is selected, a call to CV__ specifies which linear system module is to be used, where CV__ is one of CVDense, CVBand, CVDiag, or CVSpgmr (referring to the modules CVDENSE, CVBAND, CVDIAG, and CVSPGMR, respectively);
- CVode is called for each point at which output is desired;
- CVodeFree frees all memory that was allocated by CVodeMalloc.

Specification of inputs that are independent of the CVODE linear system solver is done through CVodeMalloc. The call has the form

```
cvode_mem = CVodeMalloc(N, f, t0, y0, lmm, iter, itol, &reltol, abstol,
    f_data, errfp, optIn, iopt, ropt, NULL);
```

These inputs include the problem size N, the function defining f, the initial conditions t_{0} and y_{0}, the choices of linear multistep method (Adams or BDF) for the integration and of iteration method (functional or Newton), and three tolerance parameters. The tolerance type itol is either SS, to indicate scalar relative and absolute tolerances, or SV , to indicate a scalar relative tolerance and a vector of absolute tolerances. In the call above, the abstol argument is an N_Vector in the SV case, and a pointer to a real scalar in the SS case. Following the tolerances in the call list are: a pointer to user data (described below), an error file pointer errfp (pass NULL to specify standard output), an optional input flag optIn (FALSE indicates no optional inputs), and two arrays iopt and ropt for integer and real optional inputs and outputs (discussed below). The final NULL argument is for a machine environment agrument not used in the sequential version of CVODE. The arguments to CVodeMalloc are fully described in Sections 10.1.1-10.1.3.

The second call above, to CV__, selects the linear solver to be used in connection with Newton iteration, and also supplies user inputs associated with that linear solver. The CV__ routine also does memory allocation specific to the particular linear solver. The call takes one of the following four forms:

```
CVDense(cvode_mem, Jac, jac_data);
CVBand(cvode_mem, mupper, mlower, Jac, jac_data);
CVDiag(cvode_mem);
CVSpgmr(cvode_mem, pretype, gstype, maxl, delt, Precond, PSolve, P_data);
```

In the direct CVDENSE and CVBAND cases, inputs in this call include the user's Jacobian function (if present), and bandwidths in the band case. In the CVSPGMR case, they include the user's preconditioner setup and solve functions, and a flag pretype indicating whether preconditioning is on the left, on the right, on both sides, or absent. These CV__ calls are more fully described in Section 6 .

The call to the CVode function itself has the form

```
flag = CVode(cvode_mem, tout, yout, &t, itask);
```

In addition to the CVODE memory pointer cvode_mem, it specifies only two inputs: (1) a flag itask showing whether the integration is to be done in the "normal mode" or in the "one-step mode" and (2) a value, tout, of the independent variable t at which a computed solution is desired. In the normal mode, the integration proceeds in steps (with stepsizes determined internally) up to and past tout, and CVode interpolates y at $t=$ tout. In the one-step mode, CVode takes only one step in the desired direction and returns to the calling program. In the one-step mode, tout is required on the first call only, to get the direction and rough scale of the independent variable. On return, CVode returns a vector yout and a corresponding independent variable value $t=* \mathrm{t}$, such that yout is the computed value of $y(t)$. In the normal mode, with no failures, $* \mathrm{t}$ will be equal to tout. For a detailed description of the CVode call and return values, see Section 10.1.4.

Provision is made for certain optional inputs and optional outputs. Optional inputs communicated in the CVodeMalloc call are placed in the arrays iopt and ropt. These include the maximum order,
the tentative initial stepsize, and the maximum stepsize. Each CVODE linear solver may or may not have optional inputs, which are passed through the associated CV__ call list. Of the existing four linear solvers, only CVSPGMR has optional inputs. In any case, there is a default available for every optional input. Optional outputs from the central CVODE module are also communicated through the iopt and ropt arrays which are passed to CVodeMalloc. They include step and function evaluation counts, current stepsize and order, and workspace lengths. Optional outputs specific to each linear solver are loaded into iopt and ropt, following those from the central integrator module. For full details on the optional inputs and outputs, see Section 10.1.7.

In addition to a main or calling program containing the sequence of calls described above, the user must always supply a function f that defines the right-hand side $f(t, y)$. (For its detailed specification, see Section 10.1.2.) In the direct CVDENSE and CVBAND cases, an optional Jacobian function Jac may be supplied. If it is not, a difference quotient approximation is used. In the CVSPGMR case, a pair of functions, Precond and PSolve, are supplied if the GMRES iteration is to be preconditioned. The Precond function may be absent if no setup operations are involved in the preconditioning. For details, see Section 6.

Typically, a user application involves data that is defined by the user and is to be shared between the calling program and the user-supplied functions. This is handled with pointers supplied by the user in the various calls. A pointer to a user-defined space called f_data is passed to CVodeMalloc, and this pointer is then passed in all calls to the user's function f, for use there as desired. Similarly, in the CVDENSE or CVBAND case, a pointer to user data (which can be identical to f_data) associated with the Jac routine is passed to CVDense or CVBand and then passed to Jac, and in the CVSPGMR case a pointer for preconditioning data is passed to CVSpgmr and then to Precond and PSolve. In this way, any data required by the user-supplied routines can be stored in a manner determined entirely by the user and retrieved as needed, and the user's program need not have any global data.

Error conditions are reported by the CVODE package through error messages. These are sent to standard output, or to a file specified by the user in the call to CVodeMalloc if desired. Error messages may be issued by CVodeMalloc in the course of its checking of all input, by the linear solver function
\qquad in its input checking, or by CVode from illegal input or following a numerical failure (e.g. in Newton iteration convergence or the error test).

The memory storage requirements of the CVODE package can be broken into three categories: fixed requirements, problem-dependent storage for the central integrator CVode, and problem-dependent storage for the linear solver. The problem-dependent storage for CVode consists of $N *$ (maxord +5) real words, where N is the size of the ODE system and maxord is the maximum method order. For the default value of maxord, i.e. 12 for the Adams method and 5 for the BDF method, this requirement is $17 N$ or $10 N$ real words. The problem-dependent storage requirements for the linear solvers are given in Section 6. The actual lengths of the various problem-dependent workspaces are also provided as optional outputs.

An optionally callable function CVodeDky is available to obtain additional output values. This function provides interpolated values of y or its derivatives, up to the current order of the integration method, interpolated to any value of t in the last internal step taken by CVODE. See Section 10.1.5 for details.

3 Dense Solver Sample Program

As an initial illustration of the use of the CVODE package, the following is a sample program provided as part of the package. It uses the CVODE dense linear solver module CVDENSE in the solution of a small chemical kinetics problem. Following the source, we give a rather detailed explanation of the parts of the program and their interaction with CVODE.

```
/************************************************************************
    * *
    * File: cvdx.c *
    * Programmers: Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
    * Version of 1 September 1994 *
    *----------------------------------------------------------------------------*
    * Example problem. *
    * The following is a simple example problem, with the coding
        *
    * needed for its solution by CVODE. The problem is from chemical *
    * kinetics, and consists of the following three rate equations.. *
    * dy1/dt = -.04*y1 + 1.e4*y2*y3 *
    * dy2/dt = .04*y1 - 1.e4*y2*y3 - 3.e7*(y2)^2 *
    * dy3/dt = 3.e7*(y2)~2 *
    * on the interval from t = 0.0 to t = 4.e10, with initial conditions
    * y1 = 1.0, y2 = y3 = 0. The problem is stiff.
    * This program solves the problem with the BDF method, Newton *
    * iteration with the CVODE dense linear solver, and a user-supplied *
    * Jacobian routine.
    * It uses a scalar relative tolerance and a vector absolute tolerance. *
    * Output is printed in decades from t = .4 to t = 4.e10. *
    * Run statistics (optional outputs) are printed at the end. *
    ************************************************************************/
#include <stdio.h>
/* CVODE header files with a description of contents used in cvdx.c */
#include "llnltyps.h" /* definitions of types real (set to double) and */
#include "cvode.h" /* prototypes for CVodeMalloc, CVode, and CVodeFree, */
        /* constants OPT_SIZE, BDF, NEWTON, SV, SUCCESS, */
        /* NST, NFE, NSETUPS, NNI, NCFN, NETF */
#include "cvdense.h" /* prototype for CVDense, constant DENSE_NJE */
#include "vector.h" /* definitions of type N_Vector and macro N_VIth, */
    /* prototypes for N_VNew, N_VFree */
#include "dense.h" /* definitions of type DenseMat, macro DENSE_ELEM */
/* User-defined vector and matrix accessor macros: Ith, IJth */
/* These macros are defined in order to write code which exactly matches
    the mathematical problem description given above.
    Ith(v,i) references the ith component of the vector v, where i is in
    the range [1..NEQ] and NEQ is defined below. The Ith macro is defined
    using the N_VIth macro in vector.h. N_VIth numbers the components of
    a vector starting from 0.
    IJth(A,i,j) references the (i,j)th element of the dense matrix A, where
    i and j are in the range [1..NEQ]. The IJth macro is defined using the
    DENSE_ELEM macro in dense.h. DENSE_ELEM numbers rows and columns of a
```

dense matrix starting from 0. */

```
#define Ith(v,i) N_VIth(v,i-1) /* Ith numbers components 1..NEQ */
#define IJth(A,i,j) DENSE_ELEM(A,i-1,j-1) /* IJth numbers rows,cols 1..NEQ */
```

```
/* Problem Constants */
```

$\begin{array}{lll}\text { \#define NEQ } & 3 & \text { /* number of equations } \\ \text { \#define Y1 } & 1.0 & \text { /* initial y components */ }\end{array}$
\#define Y2 0.0
\#define Y3 0.0
\#define RTOL 1e-4 /* scalar relative tolerance */
\#define ATOL1 1e-8 /* vector absolute tolerance components */
\#define ATOL2 1e-14
\#define ATOL3 1e-6
\#define T0 0.0 /* initial time */
\#define T1 $0.4 \quad / *$ first output time \quad //
\#define TMULT $10.0 \quad / *$ output time factor \quad /
\#define NOUT 12 /* number of output times */
/* Private Helper Function */
static void PrintFinalStats(long int iopt[]);
/* Functions Called by the CVODE Solver */
static void f(integer N, real t, N_{-}Vector y, N_{-}Vector ydot, void *f_data);
static void Jac(integer N, DenseMat J, RhsFn f, void *f_data, real t,
$N_{\text {_Vector }}^{y}$, N_{-}Vector fy, $N_{\text {_Vector }}$ ewt, real h, real uround,
void *jac_data, long int *nfePtr, N_Vector vtemp1,
N_Vector vtemp2, N_{-}Vector vtemp3);


```
main()
{
    real ropt[OPT_SIZE], reltol, t, tout;
    long int iopt[OPT_SIZE];
    N_Vector y, abstol;
    void *cvode_mem;
    int iout, flag;
    y = N_VNew(NEQ, NULL); /* Allocate y, abstol vectors */
    abstol = N_VNew(NEQ, NULL);
    Ith(y,1) = Y1; /* Initialize y */
    Ith(y,2) = Y2;
    Ith(y,3) = Y3;
    reltol = RTOL; /* Set the scalar relative tolerance */
    Ith(abstol,1) = ATOL1; /* Set the vector absolute tolerance */
    Ith(abstol,2) = ATOL2;
    Ith(abstol,3) = ATOL3;
    /* Call CVodeMalloc to initialize CVODE:
        NEQ is the problem size = number of equations
        f is the user's right hand side function in y'=f(t,y)
```

```
T0 is the initial time
y is the initial dependent variable vector
BDF specifies the Backward Differentiation Formula
NEWTON specifies a Newton iteration
SV specifies scalar relative and vector absolute tolerances
&reltol is a pointer to the scalar relative tolerance
abstol is the absolute tolerance vector
FALSE indicates there are no optional inputs in iopt and ropt
iopt is an array used to communicate optional integer input and output
ropt is an array used to communicate optional real input and output
A pointer to CVODE problem memory is returned and stored in cvode_mem. */
    cvode_mem = CVodeMalloc(NEQ, f, T0, y, BDF, NEWTON, SV, &reltol, abstol,
                            NULL, NULL, FALSE, iopt, ropt, NULL);
if (cvode_mem == NULL) { printf("CVodeMalloc failed.\n"); return(1); }
/* Call CVDense to specify the CVODE dense linear solver with the
    user-supplied Jacobian routine Jac. */
CVDense(cvode_mem, Jac, NULL);
/* In loop over output points, call CVode, print results, test for error */
printf(" \n3-species kinetics problem\n\n");
for (iout=1, tout=T1; iout <= NOUT; iout++, tout *= TMULT) {
    flag = CVode(cvode_mem, tout, y, &t, NORMAL);
    printf("At t = %0.4e y =%14.6e %14.6e %14.6e\n",
            t, Ith(y,1), Ith(y,2), Ith(y,3));
    if (flag != SUCCESS) { printf("CVode failed, flag=%d.\n", flag); break; }
}
    N_VFree(y); /* Free the y and abstol vectors */
    N_VFree(abstol);
    CVodeFree(cvode_mem); /* Free the CVODE problem memory */
    PrintFinalStats(iopt); /* Print some final statistics */
    return(0);
}
/************************ Private Helper Function ************************/
/* Print some final statistics located in the iopt array */
static void PrintFinalStats(long int iopt[])
{
    printf("\nFinal Statistics.. \n\n");
    printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nje = %ld\n",
    iopt[NST], iopt[NFE], iopt[NSETUPS], iopt[DENSE_NJE]);
    printf("nni = %-6ld ncfn = %-6ld netf = %ld\n \n",
    iopt[NNI], iopt[NCFN], iopt[NETF]);
}
/***************** Functions Called by the CVODE Solver ******************/
/* f routine. Compute f(t,y). */
static void f(integer N, real t, N_Vector y, N_Vector ydot, void *f_data)
{
    real y1, y2, y3, yd1, yd3;
```

```
    y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
    yd1 = Ith(ydot,1) = -0.04*y1 + 1e4*y2*y3;
    yd3 = Ith(ydot,3) = 3e7*y2*y2;
        Ith(ydot,2) = -yd1 - yd3;
}
/* Jacobian routine. Compute J(t,y). */
static void Jac(integer N, DenseMat J, RhsFn f, void *f_data, real t,
                        N_Vector y, N_Vector fy, N_Vector ewt, real h, real uround,
                        void *jac_data, long int *nfePtr, N_Vector vtemp1,
                        N_Vector vtemp2, N_Vector vtemp3)
{
    real y1, y2, y3;
    y1 = Ith(y,1); y2 = Ith(y,2); y3 = Ith(y,3);
    IJth(J,1,1) = -0.04; IJ Jth(J,1,2) = 1e4*y3; 
    IJth(J,2,1) = 0.04; IJth(J,2,2) = -1e4*y3-6e7*y2; IJth(J,2,3) = -1e4*y2;
    IJth(J,3,2) = 6e7*y2;
}
```

Following the initial comment block, this program has a number of \#include lines, which allow access to useful items in CVODE header files. The llnltyps.h file provides the definitions of the types real and integer; see Section 7 for details. For now, it suffices to read real as double and integer as int. The crode.h file provides prototypes for the three CVODE functions to be called (excluding the linear solver selection function), and also a number of constants that are to be used in dimensioning, setting input arguments, testing the return value of CVode, and accessing the integer optional outputs. See Section 10.1 for details. The cvdense.h file provides the prototype for the CVDense function, and a constant DENSE_NJE for accessing optional output specific to CVDENSE. See Section 10.2.1 for details. The vector.h file includes definitions of the N_Vector type, a macro to access vector components, and prototypes for the vector-related memory allocation and freeing functions. See Section 10.3.1 for details. Finally, the dense.h file provides the definition of the dense matrix type DenseMat and a macro for accessing matrix elements. See Section 10.3.2 for details. We have explicitly included dense.h, but this is not necessary because it is included by cvdense.h.

This program includes two user-defined accessor macros, Ith and IJth, that are useful in writing the problem functions in a form closely matching the mathematical description of the ODE system, i.e. with components numbered from 1 instead of from 0 . The Ith macro is used to access components of a vector of type N_Vector. It is defined using the CVODE accessor macro N_VIth which numbers components starting with 0 . The IJth macro is used to access elements of a dense matrix of type DenseMat. It is defined using the CVODE accessor macro DENSEEELEM which numbers matrix rows and columns starting with 0. The CVODE macros N_VIth and DENSE_ELEM are fully described in Sections 10.3.1.2 and 10.3.2.2, respectively.

Next, the program includes some problem-specific constants, which are isolated to this early location to make it easy to change them as needed.

The program prologue ends with the prototype of a private helper function and the two usersupplied functions that are called by CVODE.

The main function begins with some dimensions and type declarations. These make use of the constant OPT_SIZE and the type N_Vector. The first two lines allocate memory for the y and abstol vectors using N_VNew with a length argument of NEQ (=3). The next several lines load the initial values of the dependendent variable vector into y and set the absolute tolerance vector abstol using the Ith macro. (The NULL argument is not relevant here.) See Section 10.3.1.3.1 for details on N_VNew.

The call to CVodeMalloc specifies the BDF integration method with NEWTON iteration. The SV argument specifies a vector of absolute tolerances, and this is followed by the address of the relative tolerance reltol and the absolute tolerance vector abstol. The FALSE argument indicates that no optional inputs are present in iopt or ropt.

The three NULL actual parameters in the CVodeMalloc call are for features that are not used in this example. The first one is passed for the CVodeMalloc formal parameter f_data. This pointer is passed to f every time f is called, and is intended to point to user problem data that might be needed in f. The second NULL forces CVODE error messages to be sent to standard output; a file pointer (of type FILE *) may be given in this position otherwise. The last NULL parameter is passed for the CVodeMalloc formal parameter machEnv. This is intended for use in parallel versions of CVODE which are currently being developed. For now, the user should always pass NULL for machEnv.

The return value of CVodeMalloc is a pointer to a CVODE solver memory block for the problem and solver options specified by the inputs. In the case if failure, the return value is NULL. This pointer must be passed in the remaining calls to CVODE functions. See Section 10.1.3 for full details of the call to CVodeMalloc.

The call to CVDense with a non-NULL Jacobian function Jac specifies the CVDENSE linear solver with an analytic Jacobian supplied by the user-supplied function Jac. The NULL argument is passed for the CVDense formal parameter jac_data. In a role similar to f_data, this pointer is passed to Jac every time Jac is called, and is intended to point to user problem data that might be needed in Jac. See Section 10.2.1.1 for full details of the call to CVDense.

The actual solution of the ODE initial value problem is accomplished in the loop over values of tout. For each value, the program calls CVode in the NORMAL mode, meaning that the integrator takes steps until it overshoots tout and then interpolates to $t=$ tout, putting the computed value of y (tout) into y. The program prints t and y, and tests for a return value other than SUCCESS by CVode. See Section 10.1.4 for full details of the call to CVode.

Finally, the main program calls N_VFree to free the vectors y and abstol, calls CVodeFree to free the CVODE memory block, and prints all of the statistical quantities in the private helper function PrintFinalStats. See Section 10.3.1.3.1 for details on N_VFree, and Section 10.1.6 for details on CVodeFree.

The function PrintFinalStats used here is actually suitable for general use in connection with the use of CVODE for any problem with a dense Jacobian. It prints the cumulative number of steps (nst), the number of f evaluations (nfe), the number of matrix factorizations (nsetups), the number of Jac evaluations (nj e), the number of nonlinear (Newton) iterations (nni), the number of nonlinear convergence failures (ncnf), and the number of local error test failures (netf). These optional outputs are described in Section 10.1.7, except for nje $=$ iopt[DENSE_NJE], which is described in

Section 10.2.1.3.

The function f is a straightforward expression of the ODEs. It uses the user-defined macro Ith to extract the components of y and load the components of ydot. See Section 10.1.2 for a detailed description of f.

The function Jac sets the nonzero elements of the Jacobian as a dense matrix. (Zero elements need not be set because J is preset to zero.) It uses the user-defined macro IJth to reference the elements of a dense matrix of type DenseMat. Here the problem size is small, so we need not worry about the inefficiency of using N_VIth and DENSE_ELEM to do N_Vector and DenseMat element accesses. Note that in this example Jac only accesses the y and J arguments. See Section 10.2.1.2 for a detailed description of the dense Jac function.

The output generated by cvdx.c is shown below.

4 Band Solver Sample Program

This section includes an example that illustrates the use of CVODE band linear solver CVBAND. The source code is followed by a textual explanation and program output.

The cvbx.c program given below solves the semi-discretized form of the 2-D advection-diffusion equation

$$
\begin{equation*}
\partial u / \partial t=\partial^{2} u / \partial x^{2}+.5 \partial u / \partial x+\partial^{2} u / \partial y^{2} \tag{6}
\end{equation*}
$$

on a rectangle, with zero Dirichlet boundary conditions. The PDE is discretized spatially with standard central finite differences on a $(M X+2) \times(M Y+2)$ mesh, giving an ODE system of size MX*MY. The discrete value $u_{i j}$ approximates u at $x=i \Delta x, y=j \Delta y$. The ODEs are

$$
\begin{equation*}
\frac{d u_{i j}}{d t}=f_{i j}=\frac{u_{i-1, j}-2 u_{i j}+u_{i+1, j}}{(\Delta x)^{2}}+.5 \frac{u_{i+1, j}-u_{i-1, j}}{2 \Delta x}+\frac{u_{i, j-1}-2 u_{i j}+u_{i, j+1}}{(\Delta y)^{2}}, \tag{7}
\end{equation*}
$$

where $1 \leq i \leq$ MX and $1 \leq j \leq$ MY. The boundary conditions are imposed by taking $u_{i j}=0$ above if $i=0$ or MX +1 , or if $j=0$ or MY+1. If we set $v_{(j-1)+(i-1) * M Y}=u_{i j}$, then the system Jacobian $J=\partial f / \partial v$ is a band matrix with upper and lower bandwidths both equal to MY. In the example, we take $\mathrm{MX}=10$ and $\mathrm{MY}=5$.

```
/************************************************************************
* *
    * File: cvbx.c
    * Programmers: Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
    * Version of 1 September 1994 *
    *------------------------------------------------------------------------------
    * Example problem.
    * The following is a simple example problem with a banded Jacobian,
    * with the program for its solution by CVODE.
    * The problem is the semi-discrete form of the advection-diffusion
    * equation in 2-D:
    * *a* *
    * du/dt = d^2 u / dx^2 + .5 du/dx + d^2 u / dy^2
    * on the rectangle 0<= x <= 2, 0<= y<= 1, and the time *
    * interval 0<= t <= 1. Homogeneous Dirichlet boundary conditions *
    * are posed, and the initial condition is *
    * u(x,y,t=0) = x(2-x)y(1-y) exp(5xy).
    * The PDE is discretized on a uniform MX+2 by MY+2 grid with
    * central differencing, and with boundary values eliminated,
    * leaving an ODE system of size NEQ = MX*MY.
    * This program solves the problem with the BDF method, Newton
    * iteration with the CVODE band linear solver, and a user-supplied
    * Jacobian routine.
    * It uses scalar relative and absolute tolerances.
    * Output is printed at t = .1, .2, ..., 1.
    * Run statistics (optional outputs) are printed at the end. *
#include <stdio.h>
#include <math.h>
/* CVODE header files with a description of contents used in cvbx.c */
#include "llnltyps.h" /* definitions of real, integer, FALSE */
#include "cvode.h" /* prototypes for CVodeMalloc, CVode, and CVodeFree, */
    /* constants OPT_SIZE, BDF, NEWTON, SS, SUCCESS, */
    /* NST, NFE, NSETUPS, NNI, NCFN, NETF */
```

```
#include "cvband.h" /* prototype for CVBand, constant BAND_NJE N NDATA, */
#include "band.h" /* definitions of type BandMat, macros */
/* Problem Constants */
\begin{tabular}{lll} 
\#define XMAX & 2.0 & /* domain boundaries \\
\#/ \\
\#define YMAX & 1.0 & \\
\#define MX & 10 & /* mesh dimensions
\end{tabular}
#define MY 5
#define NEQ MX*MY /* number of equations */
#define ATOL 1.e-5 /* scalar absolute tolerance */
#define T0 0.0 /* initial time */
#define T1 0.1 /* first output time */
#define DTOUT 0.1 /* output time increment */
#define NOUT 10 /* number of output times */
/* User-defined vector access macro IJth */
/* IJth is defined in order to isolate the translation from the
    mathematical 2-dimensional structure of the dependent variable vector
    to the underlying 1-dimensional storage.
    IJth(vdata,i,j) references the element in the vdata array for
    u at mesh point (i,j), where 1 <= i <= MX, 1 <= j <= MY.
    The vdata array is obtained via the macro call vdata = N_VDATA(v),
    where v is an N_Vector.
    The variables are ordered by the y index j, then by the x index i. */
#define IJth(vdata,i,j) (vdata[(j-1) + (i-1)*MY])
/* Type : UserData
    contains grid constants */
typedef struct {
    real dx, dy, hdcoef, hacoef, vdcoef;
} *UserData;
/* Private Helper Functions */
static void SetIC(N_Vector u, UserData data);
static void PrintFinalStats(long int iopt[]);
/* Functions Called by the CVODE Solver */
static void f(integer N, real t, N_Vector u, N_Vector udot, void *f_data);
static void Jac(integer N, integer mu, integer ml, BandMat J, RhsFn f,
    void *f_data, real t, N_Vector u, N_Vector fu, N_Vector ewt,
    real h, real uround, void *jac_data, long int *nfePtr,
    N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);
/****************************** Main Program ***********************************
main()
{
    real ropt[OPT_SIZE], dx, dy, reltol, abstol, t, tout, umax;
```

```
long int iopt[OPT_SIZE];
N_Vector u;
UserData data;
void *cvode_mem;
int iout, flag;
u = N_VNew(NEQ, NULL); /* Allocate u vector */
reltol = 0.0; /* Set the tolerances */
abstol = ATOL;
data = (UserData) malloc(sizeof *data); /* Allocate data memory */
dx = data->dx = XMAX/(MX+1); /* Set grid coefficients in data */
dy = data->dy = YMAX/(MY+1);
data->hdcoef = 1.0/(dx*dx);
data->hacoef = 0.5/(2.0*dx);
data->vdcoef = 1.0/(dy*dy);
SetIC(u, data); /* Initialize u vector */
/* Call CVodeMalloc to initialize CVODE:
    NEQ ll is the problem size = number of equations 
    A pointer to CVODE problem memory is returned and stored in cvode_mem. */
cvode_mem = CVodeNalloc(NEQ, f, TO, u, BDF, NEWTON, SS, &reltol, &abstol,
    data, NULL, FALSE, iopt, ropt, NULL);
if (cvode_mem == NULL) { printf("CVodeMalloc failed.\n"); return(1); }
/* Call CVBand to specify the CVODE band linear solver with the
    user-supplied Jacobian routine Jac, bandwidths ml = mu = MY,
    and the pointer to the user-defined block data. */
CVBand(cvode_mem, MY, MY, Jac, data);
/* In loop over output points, call CVode, print results, test for error */
printf(" \n2-D advection-diffusion equation, mesh dimensions =%3d %3d\n\n",
        MX,MY);
umax = N_VMaxNorm(u);
printf("At t = %4.2f max.norm(u) =%14.6e \n", T0,umax);
for (iout=1, tout=T1; iout <= NOUT; iout++, tout += DTOUT) {
    flag = CVode(cvode_mem, tout, u, &t, NORMAL);
    umax = N_VMaxNorm(u);
    printf("At t = %4.2f max.norm(u) =%14.6e nst =%4d \n",
            t,umax,iopt[NST]);
    if (flag != SUCCESS) { printf("CVode failed, flag=%d.\n", flag); break; }
}
N_VFree(u); /* Free the u vector */
CVodeFree(cvode_mem); /* Free the CVODE problem memory */
```

```
    PrintFinalStats(iopt); /* Print some final statistics */
    return(0);
}
/************************* Private Helper Functions ***********************/
/* Set initial conditions in u vector */
static void SetIC(N_Vector u, UserData data)
{
    int i, j;
    real x, y, dx, dy;
    real *udata;
    /* Extract needed constants from data */
    dx = data->dx;
    dy = data->dy;
    /* Set pointer to data array in vector u. */
    udata = N_VDATA(u);
    /* Load initial profile into u vector */
    for (j=1; j <= MY; j++) {
        y = j*dy;
        for (i=1; i <= MX; i++) {
            x = i*dx;
            IJth(udata,i,j) = x*(XMAX - x)*y*(YMAX - y)*exp(5.0*x*y);
        }
    }
}
/* Print some final statistics located in the iopt array */
static void PrintFinalStats(long int iopt[])
{
    printf("\nFinal Statistics.. \n\n");
    printf("nst = %-6ld nfe = %-6ld nsetups = %-6ld nje = %ld\n",
    iopt[NST], iopt[NFE], iopt[NSETUPS], iopt[BAND_NJE]);
    printf("nni = %-6ld ncfn = %-6ld netf = %ld\n \n",
    iopt[NNI], iopt[NCFN], iopt[NETF]);
}
/****************** Functions Called by the CVODE Solver ******************/
/* f routine. Compute f(t,u). */
static void f(integer N, real t, N_Vector u, N_Vector udot, void *f_data)
{
    real uij, udn, uup, ult, urt, hordc, horac, verdc, hdiff, hadv, vdiff;
    real *udata, *dudata;
    int i, j;
    UserData data;
    udata = N_VDATA(u);
    dudata = N_VDATA(udot);
```

```
    /* Extract needed constants from data */
    data = (UserData) f_data;
    hordc = data->hdcoef;
    horac = data->hacoef;
    verdc = data->vdcoef;
    /* Loop over all grid points. */
    for (j=1; j <= MY; j++) {
        for (i=1; i <= MX; i++) {
            /* Extract u at x_i, y_j and four neighboring points */
            uij = IJth(udata, i, j);
            udn = (j == 1) ? 0.0 : IJth(udata, i, j-1);
            uup = (j == MY) ? 0.0 : IJth(udata, i, j+1);
            ult = (i == 1) ? 0.0 : IJth(udata, i-1, j);
            urt = (i == MX) ? 0.0 : IJth(udata, i+1, j);
            /* Set diffusion and advection terms and load into udot */
            hdiff = hordc*(ult - 2.0*uij + urt);
            hadv = horac*(urt - ult);
            vdiff = verdc*(uup - 2.0*uij + udn);
            IJth(dudata, i, j) = hdiff + hadv + vdiff;
        }
    }
}
```

```
/* Jacobian routine. Compute J(t,u). */
```

/* Jacobian routine. Compute J(t,u). */
static void Jac(integer N, integer mu, integer ml, BandMat J, RhsFn f,
static void Jac(integer N, integer mu, integer ml, BandMat J, RhsFn f,
void *f_data, real t, N_Vector u, N_Vector fu, N_Vector ewt,
void *f_data, real t, N_Vector u, N_Vector fu, N_Vector ewt,
real h, real uround, void *jac_data, long int *nfePtr,
real h, real uround, void *jac_data, long int *nfePtr,
N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3)
N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3)
{
{
integer i, j, k;
integer i, j, k;
real *kthCol, hordc, horac, verdc;
real *kthCol, hordc, horac, verdc;
UserData data;
UserData data;
/*
/*
The components of f = udot that depend on u(i,j) are
The components of f = udot that depend on u(i,j) are
f(i,j), f(i-1,j), f(i+1,j), f(i,j-1), f(i,j+1), with
f(i,j), f(i-1,j), f(i+1,j), f(i,j-1), f(i,j+1), with
df(i,j)/du(i,j) = -2 (1/dx^2 + 1/dy^2)
df(i,j)/du(i,j) = -2 (1/dx^2 + 1/dy^2)
df(i-1,j)/du(i,j) = 1/dx^2 + .25/dx (if i > 1)
df(i-1,j)/du(i,j) = 1/dx^2 + .25/dx (if i > 1)
df(i+1,j)/du(i,j) = 1/dx^2 - .25/dx (if i < MX)
df(i+1,j)/du(i,j) = 1/dx^2 - .25/dx (if i < MX)
df(i,j-1)/du(i,j) = 1/dy^2 (if j > 1)
df(i,j-1)/du(i,j) = 1/dy^2 (if j > 1)
df(i,j+1)/du(i,j) = 1/dy^2 (if j < MY)
df(i,j+1)/du(i,j) = 1/dy^2 (if j < MY)
*/
*/
data = (UserData) jac_data;
data = (UserData) jac_data;
hordc = data->hdcoef;
hordc = data->hdcoef;
horac = data->hacoef;
horac = data->hacoef;
verdc = data->vdcoef;
verdc = data->vdcoef;
for (j=1; j <= MY; j++) {
for (j=1; j <= MY; j++) {
for (i=1; i <= MX; i++) {
for (i=1; i <= MX; i++) {
k = j-1 + (i-1)*MY;
k = j-1 + (i-1)*MY;
kthCol = BAND_COL(J,k);

```
                kthCol = BAND_COL(J,k);
```

```
                /* set the kth column of J */
                BAND_COL_ELEM(kthCol,k,k) = -2.0*(verdc+hordc);
                if (i != 1) BAND_COL_ELEM(kthCol,k-MY,k) = hordc + horac;
                if (i != MX) BAND_COL_ELEM(kthCol,k+MY,k) = hordc - horac;
                if (j != 1) BAND_COL_ELEM(kthCol,k-1,k) = verdc;
                if (j != MY) BAND_COL_ELEM(kthCol,k+1,k) = verdc;
        }
    }
}
```

The cvbx.c program includes the files cvband.h and band.h in order to use the CVBAND linear solver. The cvband.h file contains the prototype for the CVBand routine, as well as the index constant BAND_NJE used in accessing optional output specific to CVBAND. See Section 10.2.2. The band.h file contains the definition for band matrix type BandMat and the BAND_COL and BAND_COL_ELEM macros for accessing matrix elements. See Section 10.3.3. We have explicitly included band.h, but this is not necessary because it is included by cvband.h. The file vector.h is included for the definition of the type N_Vector and the accessor macro N_VDATA. This macro is fully documented in Section 10.3.1.2.

The include lines at the top of the file are followed by definitions of problem constants which include the x and y mesh dimensions, MX and MY, the number of equations NEQ, the scalar absolute tolerance ATOL, the initial time TO, and the initial output time T1.

Spatial discretization of the partial differential equation naturally produces an ODE system in which equations are numbered by mesh coordinates (i, j). The user-defined macro IJth isolates the translation for the mathematical two-dimensional index to the one-dimensional N_Vector index and allows the user to write clean, readable code to access components of the dependent variable. The N_VDATA macro returns the component array for a given N_Vector, and this array is passed to IJth in order to do the actual N_Vector access.

The type UserData is a pointer to a structure containing problem data that the user needs in his/her f and Jac functions. This structure is allocated and initialized at the beginning of main. The pointer to this structure, called data, is passed to both CVodeMalloc and CVBand. Passing data to CVodeMalloc for the formal parameter f_data means that data will be passed to the f function each time f is called. Passing data to CVBand for the formal parameter jac_data means that data will also be passed to the Jac function each time Jac is called. The use of the data pointer eliminates the need for global program data.

The four functions other than main in the cvbx.c file are SetIC, PrintFinalStats, f, and Jac. The first two functions are called only from within the cvbx.c file. The SetIC function sets the initial dependent variable vector, and PrintFinalStats prints out statistics at the end of the run. The latter include various counters, such as the total number of steps (nst), f evaluations (nfe), LU decompositions (nsetups), Jacobian evaluations (nje), and nonlinear iterations (nni). These optional outputs are described in Sections 10.1.7 and 10.2.2.3.

The main function is straightforward. The CVodeMalloc call specifies the BDF method with a NEWTON iteration. The SS actual parameter indicates scalar relative and absolute tolerances, and pointers \&reltol and \&abstol to these values are passed. The call to CVBand with a non-NULL Jacobian
function Jac specifies the CVBAND linear solver with a user-supplied Jacobian. The constant MY is passed for both the upper and lower bandwidths of the Jacobian. See Section 10.2.2.1 for full details on CVBand. The actual solution of the problem is performed by the call to CVode within the loop over the output times tout. The max-norm of the solution vector and the number of time steps is printed at each output time. Finally, the calls to N_VFree, CVodeFree, and PrintFinalStats free problem memory and print statistics.

The user's f function implements the central difference approximation (7) with u identically zero on the boundary.

The user's Jac function is an expression of the derivatives

$$
\begin{aligned}
\partial f_{i j} / \partial u_{i j} & =-2\left[(\Delta x)^{-2}+(\Delta y)^{-2}\right] \\
\partial f_{i j} / \partial u_{i+1, j} & =(\Delta x)^{-2}+.5(2 \Delta x)^{-1}, \quad \partial f_{i j} / \partial u_{i-1, j}=(\Delta x)^{-2}-.5(2 \Delta x)^{-1} \\
\partial f_{i j} / \partial u_{i, j+1} & =(\Delta y)^{-2}, \quad \partial f_{i j} / \partial u_{i, j-1}=(\Delta y)^{-2}
\end{aligned}
$$

The values $(\Delta x)^{-2}, .5(2 \Delta x)^{-1}$, and $(\Delta y)^{-2}$ are computed only once at the beginning of main, and stored in the locations data->hdcoef, data->hacoef, and data->vdcoef, respectively. When Jac receives the data pointer, it pulls out these values from storage in the local variables hordc, horac, and verdc. The Jac function loads the Jacobian by columns. It loops over the mesh points (i, j) . For each such mesh point, the one-dimensional index $k=j-1+(i-1) * M Y$ is computed and the kth column of the Jacobian matrix J is set. The row index k^{\prime} of each component $f_{i^{\prime}, j^{\prime}}$ that depends on $u_{i, j}$ must be identified in order to load the corresponding element. The elements are loaded with the BAND_COL_ELEM macro. Note that the formula for the global index k implies that decreasing (increasing) i by 1 corresponds to decreasing (increasing) k by my, while decreasing (increasing) j by 1 corresponds of decreasing (increasing) k by 1 . These statements are reflected in the calls to BAND_COL_ELEM. The first argument passed to the BAND_COL_ELEM macro is a pointer to the diagonal element in the column to be accessed. This pointer is obtained via a call to the BAND_COL macro and is stored in kthCol in the Jac function. When setting the components of J we must be careful not to index out of bounds. The guards (i != 1), (i != MX), (j != 1), and (j != MY) in front of the calls to BAND_COL_ELEM prevent illegal indexing.

The output generated by cvbx.c is shown below.

```
2-D advection-diffusion equation, mesh dimensions = 10 5
At t = 0.00 max.norm(u) = 8.954716e+01
At t = 0.10 max.norm(u) = 4.132889e+00
At t = 0.20
At t = 0.30
At t = 0.40
At t = 0.50
At t = 0.60
At t = 0.70
At t = 0.80
At t = 0.90
At t = 1.00
    max.norm(u) = 4.132889e+00 nst = 85
    max.norm(u) = 1.039294e+00 nst = 103
    max.norm(u) = 2.979829e-01 nst = 113
    max.norm(u) = 8.765774e-02 nst = 120
    max.norm(u) = 2.625637e-02 nst = 126
    max.norm(u) = 7.830425e-03 nst = 130
    max.norm(u) = 2.329387e-03 nst = 134
    max.norm(u) = 6.953434e-04 nst = 137
    max.norm(u) = 2.115983e-04 nst = 140
    max.norm(u) = 6.556853e-05 nst = 142
Final Statistics..
nst = 142 nfe = 173 nsetups = 23 nje = 3
nni = 170 ncfn = 0 netf = 3
```


5 Krylov Solver Sample Program

We give here an example that illustrates the use of CVODE with the Krylov method SPGMR, in the CVSPGMR module, as the linear system solver. Following the source are explanatory comments on the program.

The following program solves the semi-discretized form of a pair of kinetics-advection-diffusion partial differential equations. The problem is defined on a rectangle, and discretized spatially with standard central finite differences on a 10×10 mesh, giving an ODE system of size 200 .

```
/**************************************************************************
* *
* File: cvkx.c
    * Programmers: Scott D. Cohen and Alan C. Hindmarsh @ LLNL *
    * Version of 1 September 1994 *
    *--------------------------------------------------------------------------**
    * Example problem.
        *
    * An ODE system is generated from the following 2-species diurnal *
    * kinetics advection-diffusion PDE system in 2 space dimensions: *
    *
    * dc(i)/dt = Kh*(d/dx) ^2 c(i) + V*dc(i)/dx + (d/dz) (Kv(z)*dc(i)/dz) *
    * + Ri(c1,c2,t) for i = 1,2, where *
    * R1(c1, c2,t) = -q1*c1*c3 - q2*c1*c2 + 2*q3(t)*c3 + q4(t)*c2, *
    * R2(c1,c2,t) = q1*c1*c3 - q2*c1*c2 - q4(t)*c2 , *
    * Kv(z) = Kv0*exp(z/5) ,
    * Kh, V, Kv0, q1, q2, and c3 are constants, and q3(t) and q4(t) *
    * vary diurnally. The problem is posed on the square *
    * 0<= x <= 20, 30<= z<= 50 (all in km), *
    * with homogeneous Neumann boundary conditions, and for time t in *
    * 0<= t <= 86400 sec (1 day).
    * The PDE system is treated by central differences on a uniform *
    * 10 x 10 mesh, with simple polynomial initial profiles. *
    * The problem is solved with CVODE, with the BDF/GMRES method (i.e.
    * using the CVSPGMR linear solver) and the block-diagonal part of the *
    * Newton matrix as a left preconditioner. A copy of the block-diagonal *
    * part of the Jacobian is saved and conditionally reused within the *
    * Precond routine.
    **************************************************************************/
```

```
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "llnltyps.h" /* definitions of real, integer, bool, TRUE, FALSE */
#include "cvode.h" /* main CVODE header file */
#include "iterativ.h" /* contains the enum for types of preconditioning */
#include "cvspgmr.h" /* use CVSPGMR linear solver each internal step */
#include "dense.h" /* use generic DENSE solver for preconditioning */
#include "vector.h" /* definitions of type N_Vector, macro N_VDATA */
#include "llnlmath.h" /* contains SQR macro */
```

```
/* Problem Constants */
#define NUM_SPECIES 2
#define KH 4.0e-6 /* horizontal diffusivity Kh */
#define VEL ll* advection velocity V */
#define KVO 1.0e-8 /* coefficient in Kv(z) */
#define Q1 1.63e-16 /* coefficients q1, q2, c3 */
#define Q2 4.66e-16
```

```
/* number of species */
```

```
/* number of species */
```

\#define C3	3.7 e16	
\#define A3	22.62	/* coefficient in expression for q3 (t) */
\#define A4	7.601	/* coefficient in expression for q4(t) */
\#define C1_SCALE	1.0 e 6	/* coefficients in initial profiles */
\#define C2_SCALE	$1.0 \mathrm{el2}$	
\#define T0	0.0	/* initial time */
\#define NOUT	12	/* number of output times */
\#define TWOHR	7200.0	/* number of seconds in two hours */
\#define HALFDAY	4.32 e 4	/* number of seconds in a half day */
\#define PI	3.1415926535898	/* pi */
\#define XMIN	0.0	/* grid boundaries in x */
\#define XMAX	20.0	
\#define ZMIN	30.0	/* grid boundaries in z */
\#define ZMAX	50.0	
\#define XMID	10.0	/* grid midpoints in x,z */
\#define ZMID	40.0	
\#define MX	10	/* MX = number of x mesh points */
\#define MZ	10	/* MZ = number of z mesh points */
\#define NSMX	20	/* NSMX = NUM_SPECIES*NX */
\#define MM	($\mathrm{MX} * \mathrm{MZ}$)	/* MM $=\mathrm{MX} * \mathrm{MZ}$ */

/* CVodeMalloc Constants */

\#define RTOL	1.0e-5	/* scalar relative tolerance */
\#define FLOOR	100.0	/* value of C1 or C2 at which tolerances */
		/* change from relative to absolute
\#define ATOL	(RTOL*FLOOR)	/* scalar absolute tolerance */
\#define NEQ	(NUM_SPECIES*MM)	/* NEQ = number of equations */

/* User-defined vector and matrix accessor macros: IJKth, IJth */
/* IJKth is defined in order to isolate the translation from the mathematical 3-dimensional structure of the dependent variable vector to the underlying 1-dimensional storage. IJth is defined in order to write code which indexes into small dense matrices with a (row, column) pair, where 1 <= row, column <= NUM_SPECIES.

IJKth(vdata, i, j, k) references the element in the vdata array for species i at mesh point (j,k), where $1<=i<=$ NUM_SPECIES, $0<=j<=M X-1,0<=k<=M Z-1$. The vdata array is obtained via the macro call vdata $=$ N_VDATA(v), where v is an N_Vector. For each mesh point (j,k), the elements for species i and i+1 are contiguous within vdata.

IJth (a, i, j) references the (i, j)th entry of the small matrix real $* * a$, where $1<=i, j<=$ NUM_SPECIES. The small matrix routines in dense.h work with matrices stored by column in a 2 -dimensional array. In C, arrays are indexed starting at 0 , not 1. */

```
#define IJKth(vdata,i,j,k) (vdata[i-1 + (j)*NUM_SPECIES + (k)*NSMX])
#define IJth(a,i,j) (a[j-1][i-1])
```

/* Type : UserData
contains preconditioner blocks, pivot arrays, and problem constants */
typedef struct \{

```
    real **P[MX][MZ], **Jbd[MX][MZ];
    integer *pivot[MX][MZ];
    real q4, om, dx, dz, hdco, haco, vdco;
} *UserData;
/* Private Helper Functions */
static UserData AllocUserData(void);
static void InitUserData(UserData data);
static void FreeUserData(UserData data);
static void SetInitialProfiles(N_Vector y, real dx, real dz);
static void PrintOutput(long int iopt[], real ropt[], N_Vector y, real t);
static void PrintFinalStats(long int iopt[]);
/* Functions Called by the CVODE Solver */
static void f(integer N, real t, N_Vector y, N_Vector ydot, void *f_data);
static int Precond(integer N, real tn, N_Vector y, N_Vector fy, bool jok,
    bool *jcurPtr, real gamma, N_Vector ewt, real h,
    real uround, long int *nfePtr, void *P_data,
    N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);
static int PSolve(integer N, real tn, N_Vector y, N_Vector fy, N_Vector vtemp,
    real gamma, N_Vector ewt, real delta, long int *nfePtr,
    N_Vector r, int lr, void *P_data, N_Vector z);
/****************************** Main Program *********************************/
main()
{
    real abstol, reltol, t, tout, ropt[OPT_SIZE];
    long int iopt[OPT_SIZE];
    N_Vector y;
    UserData data;
    void *cvode_mem;
    int iout, flag;
    /* Allocate memory, and set problem data, initial values, tolerances */
    y = N_VNew(NEQ, NULL);
    data = AllocUserData();
    InitUserData(data);
    SetInitialProfiles(y, data->dx, data->dz);
    abstol=ATOL; reltol=RTOL;
/* Call CVodeNalloc to initialize CVODE:
\begin{tabular}{ll} 
NEQ & is the problem size = number of equations \\
f & is the user's right hand side function in \(y '=f(t, y)\) \\
TO & is the initial time \\
y & is the initial dependent variable vector \\
BDF & specifies the Backward Differentiation Formula \\
NEWTON & specifies a Newton iteration \\
SS & specifies scalar relative and absolute tolerances \\
\&reltol and \&abstol are pointers to the scalar tolerances \\
data & is the pointer to the user-defined block of coefficients \\
FALSE & indicates there are no optional inputs in iopt and ropt \\
iopt & and ropt arrays communicate optional integer and real input/output
\end{tabular}
```

A pointer to CVODE problem memory is returned and stored in cvode_mem. */

```
    cvode_mem = CVodeMalloc(NEQ, f, TO, y, BDF, NEWTON, SS, &reltol,
    &abstol, data, NULL, FALSE, iopt, ropt, NULL);
    if (cvode_mem == NULL) { printf("CVodeNalloc failed."); return(1); }
    /* Call CVSpgmr to specify the CVODE linear solver CVSPGMR with
        left preconditioning, modified Gram-Schmidt orthogonalization,
        default values for the maximum Krylov dimension maxl and the tolerance
        parameter delt, preconditioner setup and solve routines Precond and
        PSolve, and the pointer to the user-defined block data.
    CVSpgmr(cvode_mem, LEFT, MODIFIED_GS, 0, 0.0, Precond, PSolve, data);
    /* In loop over output points, call CVode, print results, test for error */
    printf(" \n2-species diurnal advection-diffusion problem\n\n");
    for (iout=1, tout = TWOHR; iout <= NOUT; iout++, tout += TWOHR) {
    flag = CVode(cvode_mem, tout, y, &t, NORMAL);
    PrintOutput(iopt, ropt, y, t);
    if (flag != SUCCESS) { printf("CVode failed, flag=%d.\n", flag); break; }
    }
    /* Free memory and print final statistics */
    N_VFree(y);
    FreeUserData(data);
    CVodeFree(cvode_mem);
    PrintFinalStats(iopt);
    return(0);
}
/************************ Private Helper Functions ***************************
/* Allocate memory for data structure of type UserData */
static UserData AllocUserData(void)
{
    int jx, jz;
    UserData data;
    data = (UserData) malloc(sizeof *data);
    for (jx=0; jx < MX; jx++) {
        for (jz=0; jz < MZ; jz++) {
            (data->P)[jx][jz] = denalloc(NUM_SPECIES);
            (data->Jbd)[jx][jz] = denalloc(NUM_SPECIES);
            (data->pivot)[jx][jz] = denallocpiv(NUM_SPECIES);
        }
    }
    return(data);
}
/* Load problem constants in data */
static void InitUserData(UserData data)
{
    data->om = PI/HALFDAY;
    data->dx = (XMAX-XMIN)/(MX-1);
    data->dz = (ZMAX-ZMIN)/(MZ-1);
```

```
    data->hdco = KH/SQR(data->dx);
    data->haco = VEL/(2.0*data->dx);
    data->vdco = (1.0/SQR(data->dz))*KV0;
}
/* Free data memory */
static void FreeUserData(UserData data)
{
    int jx, jz;
    for (jx=0; jx < MX; jx++) {
        for (jz=0; jz< MZ; jz++) {
            denfree((data->P)[jx][jz]);
            denfree((data-> Jbd)[jx][jz]);
            denfreepiv((data->pivot)[jx][jz]);
        }
    }
    free(data);
}
/* Set initial conditions in y */
static void SetInitialProfiles(N_Vector y, real dx, real dz)
{
    int jx, jz;
    real x, z, cx, cz;
    real *ydata;
    /* Set pointer to data array in vector y. */
    ydata = N_VDATA(y);
    /* Load initial profiles of c1 and c2 into y vector */
    for (jz=0; jz < MZ; jz++) {
        z = ZMIN + jz*dz;
        cz = SQR(0.1*(z - ZMID));
        cz = 1.0 - cz + 0.5*SQR(cz);
        for (jx=0; jx < MX; jx++) {
            x = XMIN + jx*dx;
            cx = SQR(0.1*(x - XMID));
            cx = 1.0 - cx + 0.5*SQR(cx);
            IJKth(ydata,1,jx,jz) = C1_SCALE*cx*cz;
            IJKth(ydata,2,jx,jz) = C2_SCALE*cx*cz;
        }
    }
}
/* Print current t, step count, order, stepsize, and sampled c1,c2 values */
static void PrintOutput(long int iopt[], real ropt[], N_Vector y, real t)
{
    real *ydata;
    ydata = N_VDATA(y);
    printf("t = %.2e no. steps = %d order = %d stepsize = %.2e\n",
            t, iopt[NST], iopt[QU], ropt[HU]);
    printf("c1 (bot.left/middle/top rt.) = %12.3e %12.3e %12.3e\n",
                IJKth(ydata, 1,0,0), I JKth(ydata,1,4,4), IJKth(ydata, 1, 9,9));
```

```
```

 printf("c2 (bot.left/middle/top rt.) = %12.3e %12.3e %12.3e\n\n",
    ```
```

 printf("c2 (bot.left/middle/top rt.) = %12.3e %12.3e %12.3e\n\n",
 IJKth(ydata,2,0,0), IJKth(ydata,2,4,4), IJKth(ydata,2,9,9));
 IJKth(ydata,2,0,0), IJKth(ydata,2,4,4), IJKth(ydata,2,9,9));
 }
}
/* Print final statistics contained in iopt */
/* Print final statistics contained in iopt */
static void PrintFinalStats(long int iopt[])
static void PrintFinalStats(long int iopt[])
{
{
printf("\nFinal Statistics.. \n\n");
printf("\nFinal Statistics.. \n\n");
printf("lenrw = %5ld leniw = %5ld\n", iopt[LENRW], iopt[LENIW]);
printf("lenrw = %5ld leniw = %5ld\n", iopt[LENRW], iopt[LENIW]);
printf("llrw = %5ld lliw = %5ld\n", iopt[SPGMR_LRW], iopt[SPGMR_LIW]);
printf("llrw = %5ld lliw = %5ld\n", iopt[SPGMR_LRW], iopt[SPGMR_LIW]);
printf("nst = %5ld nfe = %5ld\n", iopt[NST], iopt[NFE]);
printf("nst = %5ld nfe = %5ld\n", iopt[NST], iopt[NFE]);
printf("nni = %5ld nli = %5ld\n", iopt[NNI], iopt[SPGMR_NLI]);
printf("nni = %5ld nli = %5ld\n", iopt[NNI], iopt[SPGMR_NLI]);
printf("nsetups = %5ld netf = %5ld\n", iopt[NSETUPS], iopt[NETF]);
printf("nsetups = %5ld netf = %5ld\n", iopt[NSETUPS], iopt[NETF]);
printf("npe = %5ld nps = %5ld\n", iopt[SPGMR_NPE], iopt[SPGMR_NPS]);
printf("npe = %5ld nps = %5ld\n", iopt[SPGMR_NPE], iopt[SPGMR_NPS]);
printf("ncfn = %5ld ncfl = %5ld\n \n", iopt[NCFN], iopt[SPGMR_NCFL]);
printf("ncfn = %5ld ncfl = %5ld\n \n", iopt[NCFN], iopt[SPGMR_NCFL]);
}

```
```

}

```
```

$/ * * * * * * * * * * * * * * * * *$ Functions Called by the CVODE Solver $* * * * * * * * * * * * * * * * * / ~$
/* f routine. Compute $f(t, y)$. */
static void f(integer N, real t, N_Vector y, N_Vector ydot, void *f_data)
\{
real q3, c1, c2, c1dn, c2dn, c1up, c2up, c11t, c2lt;
real c1rt, c2rt, czdn, czup, hord1, hord2, horad1, horad2;
real qq1, qq2, qq3, qq4, rkin1, rkin2, s, vertd1, vertd2, zdn, zup;
real q4coef, delz, verdco, hordco, horaco;
real *ydata, *dydata;
int jx, jz, idn, iup, ileft, iright;
UserData data;
data $=$ (UserData) f_data;
ydata $=$ N_VDATA(y) ;
dydata $=N_{-} \operatorname{VDATA}(y d o t)$;
/* Set diurnal rate coefficients. */
$\mathrm{s}=\mathrm{sin}($ data->om*t);
if (s > 0.0) \{
q3 $=\exp (-A 3 / s)$;
data->q4 $=\exp (-A 4 / s)$;
\} else \{
q3 $=0.0$;
data->q4 $=0.0$;
\}
/* Make local copies of problem variables, for efficiency. */
q4coef $=$ data->q4;
delz = data->dz;
verdco = data->vdco;
hordco = data->hdco;
horaco = data->haco;
/* Loop over all grid points. */
for ($j z=0 ; j z<M Z ; j z++$) \{
/* Set vertical diffusion coefficients at jz +- 1/2 */

```
        zdn = ZMIN + (jz - . 5)*delz;
        zup = zdn + delz;
        czdn = verdco*exp(0.2*zdn);
        czup = verdco*exp(0.2*zup);
        idn = (jz == 0) ? 1 : -1;
        iup = (jz == MZ-1) ? -1 : 1;
        for (jx=0; jx < MX; jx++) {
            /* Extract c1 and c2, and set kinetic rate terms. */
            c1 = IJKth(ydata,1,jx,jz);
            c2 = IJKth(ydata,2,jx,jz);
            qq1 = Q1*c1*C3;
            qq2 = Q2*c1*c2;
            qq3 = q3*C3;
            qq4 = q4coef*c2;
            rkin1 = -qq1 - qq2 + 2.0*qq3 + qq4;
            rkin2 = qq1 - qq2 - qq4;
            /* Set vertical diffusion terms. */
            c1dn = IJKth(ydata,1,jx,jz+idn);
            c2dn = IJKth(ydata, 2, jx,jzzidn);
            c1up = IJKth(ydata,1,jx,jz+iup);
            c2up = IJKth(ydata,2,jx,jz+iup);
            vertd1 = czup*(c1up - c1) - czdn*(c1 - c1dn);
            vertd2 = czup*(c2up - c2) - czdn*(c2 - c2dn);
            /* Set horizontal diffusion and advection terms. */
            ileft = (jx == 0) ? 1 : -1;
            iright =(jx == MX-1) ? -1 : 1;
            c1lt = IJKth(ydata,1,jx+ileft,jz);
            c2lt = IJKth(ydata,2,jx+ileft,jz);
            c1rt = IJKth(ydata,1,jx+iright,jz);
            c2rt = IJKth(ydata,2,jx+iright,jz);
            hord1 = hordco*(c1rt - 2.0*c1 + c1lt);
            hord2 = hordco*(c2rt - 2.0*c2 + c2lt);
            horad1 = horaco*(c1rt - c1lt);
            horad2 = horaco*(c2rt - c2lt);
            /* Load all terms into ydot. */
            IJKth(dydata, 1, jx, jz) = vertd1 + hord1 + horad1 + rkin1;
            IJKth(dydata, 2, jx, jz) = vertd2 + hord2 + horad2 + rkin2;
        }
    }
}
/* Preconditioner setup routine. Generate and preprocess P. */
static int Precond(integer N, real tn, N_Vector y, N_Vector fy, bool jok,
                        bool *jcurPtr, real gamma, N_Vector ewt, real h,
                        real uround, long int *nfePtr, void *P_data,
                        N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3)
{
    real c1, c2, czdn, czup, diag, zdn, zup, q4coef, delz, verdco, hordco;
    real **(*P)[MZ], **(*Jbd)[MZ];
    integer *(*pivot)[MZ], ier;
    int jx, jz;
    real *ydata, **a, **j;
    UserData data;
```

```
/* Make local copies of pointers in P_data, and of pointer to y's data */
data = (UserData) P_data;
P = data->P;
Jbd = data->Jbd;
pivot = data->pivot;
ydata = N_VDATA(y);
if (jok) {
/* jok = TRUE: Copy Jbd to P */
    for (jz=0; jz < MZ; jz++)
        for (jx=0; jx < MX; jx++)
        dencopy(Jbd[jx][jz], P[jx][jz], NUM_SPECIES);
*jcurPtr = FALSE;
}
else {
/* jok = FALSE: Generate Jbd from scratch and copy to P */
/* Make local copies of problem variables, for efficiency. */
q4coef = data->q4;
delz = data->dz;
verdco = data->vdco;
hordco = data->hdco;
/* Compute 2x2 diagonal Jacobian blocks (using q4 values
    computed on the last f call). Load into P. */
    for (jz=0; jz < MZ; jz++) {
        zdn = ZMIN + (jz - .5)*delz;
        zup = zdn + delz;
        czdn = verdco*exp(0.2*zdn);
        czup = verdco*exp(0.2*zup);
        diag = -(czdn + czup + 2.0*hordco);
        for (jx=0; jx < MX; jx++) {
            c1 = IJKth(ydata,1,jx,jz);
            c2 = IJKth(ydata, 2, jx,jz);
            j = Jbd[jx][jz];
            a = P[jx][jz];
            IJth(j,1,1) = (-Q1*C3 - Q2*c2) + diag;
            IJth(j,1,2) = -Q2*c1 + q4coef;
            IJth(j,2,1) = Q1*C3 - Q2*c2;
            IJth(j,2,2) = (-Q2*c1 - q4coef) + diag;
            dencopy(j, a, NUM_SPECIES);
        }
    }
*jcurPtr = TRUE;
}
/* Scale by -gamma */
    for (jz=0; jz < MZ; jz++)
        for (jx=0; jx < MX; jx++)
            denscale(-gamma, P[jx][jz], NUM_SPECIES);
```

```
    /* Add identity matrix and do LU decompositions on blocks in place. */
    for (jx=0; jx < MX; jx++) {
        for (jz=0; jz < MZ; jz++) {
            denaddI(P[jx][jz], NUM_SPECIES);
            ier = gefa(P[jx][jz], NUM_SPECIES, pivot[jx][jz]);
            if (ier != 0) return(1);
        }
    }
    return(0);
}
/* Preconditioner solve routine */
static int PSolve(integer N, real tn, N_Vector y, N_Vector fy, N_Vector vtemp,
                    real gamma, N_Vector ewt, real delta, long int *nfePtr,
                    N_Vector r, int lr, void *P_data, N_Vector z)
{
    real **(*P)[MZ];
    integer *(*pivot) [MZ];
    int jx, jz;
    real *zdata, *v;
    UserData data;
    /* Extract the P and pivot arrays from P_data. */
    data = (UserData) P_data;
    P = data->P;
    pivot = data->pivot;
    zdata = N_VDATA(z);
    N_VScale(1.0, r, z);
    /* Solve the block-diagonal system Px = r using LU factors stored
        in P and pivot data in pivot, and return the solution in z. */
    for (jx=0; jx < MX; jx++) {
        for (jz=0; jz < MZ; jz++) {
            v = &(IJKth(zdata, 1, jx, jz));
            gesl(P[jx][jz], NUM_SPECIES, pivot[jx][jz], v);
        }
    }
    return(0);
}
```

Among the initial \#include lines in this case are lines to include iterativ.h, cvspgmr.h, and llnlmath.h. The first two contain constants and function prototypes associated with preconditioned Krylov methods, including the values of the pretype argument to CVSpgmr. The inclusion of llnlmath.h is done to access the SQR macro for the square of a real number.

The main function calls CVodeMalloc specifying BDF and NEWTON, with scalar tolerances. It calls CVSpgmr specifying the CVSPGMR linear solver with left preconditioning, modified Gram-Schmidt orthogonalization, default values (indicated by zero arguments) for the optional inputs maxl and delt, and non-NULL preconditioner setup and solve functions, Precond and PSolve. The data pointer passed
to CVSpgmr is passed to Precond and PSolve whenever these are called. See Section 10.2.4.1 for details on the CVSpgmr function. The preconditioner is the block-diagonal part of the true Newton matrix. Then for a sequence of tout values, CVode is called in the NORMAL mode, sampled output is printed, and the return value is tested for error conditions. Finally, CVodeFree is called and final statistics are printed. The latter include various counters, such as the total number of steps (nst), f evaluations (nfe), nonlinear iterations (nni), and linear iterations (nli), among others. Also printed are the lengths of the problem-dependent real and integer workspaces used by the main integrator CVode, denoted lenrw and leniw, and those used by CVSPGMR, denoted llww and lliw. These optional outputs are described in Sections 10.1.7 and 10.2.4.4.

Mathematically, the dependent variable has three dimensions: species number, x mesh point, and y mesh point. But in CVODE, a vector of type N_Vector works with a one-dimensional contiguous array of data components. The macro IJKth isolates the translation from three dimensions to one. Its use results in clearer code and makes it easy to change the underlying layout of the three-dimensional data. Here the problem size is 200 , so we use the N_VDATA macro for efficient N_Vector access. The N_VDATA macro gives a pointer to the first component of an N_Vector which we pass to the IJKth macro to do an N_Vector access. The N_VDATA macro is documented in Section 10.3.1.2.

The preconditioner is generated and factored in the Precond routine and backsolved in the PSolve routine. It is a block-diagonal matrix with 2×2 blocks that include the interaction Jacobian elements and the diagonal contribution of the diffusion Jacobian elements. The block-diagonal part of the Jacobian itself, $J_{b d}$, is saved in separate storage each time it is generated, on calls to Precond with jok $==$ FALSE. On calls with jok == TRUE, signifying that saved Jacobian data can be reused, the preconditioner $P=I-\gamma J_{b d}$ is formed from the saved matrix $J_{b d}$ and factored. (A call to Precond with jok == TRUE can only occur after a call with jok == FALSE.) In each case, we set the value of jcur, i.e. *jcurPtr, to TRUE when $J_{b d}$ is re-evaluated, and FALSE otherwise, to inform CVSPGMR of the status of Jacobian data.

We need to take a brief detour to explain one last important point about the cvkx.c user program. As documented in dense.h and band.h, the generic DENSE and BAND solvers each contain two sets of routines: one for large, potentially distributed matrices, and one for small matrices which will always reside on a single processor. The "large" dense and band routines work with the types DenseMat and BandMat, respectively. The "small" dense and band routines work with real $* *$ as the underlying dense and band matrix types. The types DenseMat and BandMat, as well as their supporting functions, may be re-implemented in order to use this generic DENSE solver in a distributed-memory environment. The CVDENSE and CVBAND linear solvers use the types DenseMat and BandMat for the $N \times N$ dense and band Jacobian and Newton matrices, and call the large matrix routines. The small dense and band routines are available for CVODE user programs, and are documented in Sections 10.3.2.4 and 10.3.3.4, respectively. In cvkx.c, each of the blocks of the preconditioner is a 2×2 dense matrix. Thus the small dense matrix routines denalloc, dencopy, denscale, gefa, gesl, denaddI, denfree, and denfreepiv are used. The macro IJth defined near the top of the file is used to access individual elements in each preconditioner block, numbered from 1.

The output generated by cvkx.c is shown below. Note that the number of preconditioner evaluations, npe, is much smaller than the number of preconditioner setups, nsetups, as a result of the Jacobian re-use scheme.

2-species diurnal advection-diffusion problem
$\mathrm{t}=7.20 \mathrm{e}+03$ no. steps $=219$
c 1 (bot.left/middle/top rt.) $=$
c 2 (bot.left/middle/top rt.) $=$
$\mathrm{t}=1.44 \mathrm{e}+04$ no. steps $=251$ c1 (bot.left/middle/top rt.) = c2 (bot.left/middle/top rt.) =
$\mathrm{t}=2.16 \mathrm{e}+04$ no. steps $=277$ c1 (bot.left/middle/top rt.) = c2 (bot.left/middle/top rt.) =
$\mathrm{t}=2.88 \mathrm{e}+04$ no. steps $=324$ c1 (bot.left/middle/top rt.) = c2 (bot.left/middle/top rt.) =
$\mathrm{t}=3.60 \mathrm{e}+04$ no. steps $=367$ c1 (bot.left/middle/top rt.) = c2 (bot.left/middle/top rt.) =
$\mathrm{t}=4.32 \mathrm{e}+04$ no. steps $=422$ c1 (bot.left/middle/top rt.) = c2 (bot.left/middle/top rt.) =
$\mathrm{t}=5.04 \mathrm{e}+04$ no. steps $=438$ c1 (bot.left/middle/top rt.) = c2 (bot.left/middle/top rt.) =
$\mathrm{t}=5.76 \mathrm{e}+04$ no. steps $=452$ c1 (bot.left/middle/top rt.) = c2 (bot.left/middle/top rt.) =
$\mathrm{t}=6.48 \mathrm{e}+04$ no. steps $=463$ c1 (bot.left/middle/top rt.) = c2 (bot.left/middle/top rt.) =
$\mathrm{t}=7.20 \mathrm{e}+04$ no. steps $=474$ c1 (bot.left/middle/top rt.) = c2 (bot.left/middle/top rt.) =
$\mathrm{t}=7.92 \mathrm{e}+04$ no. steps $=485$ c1 (bot.left/middle/top rt.) = c2 (bot.left/middle/top rt.) =

```
t = 8.64e+04 no. steps = 496
```

c1 (bot.left/middle/top rt.) =
c2 (bot.left/middle/top rt.) =

order = 5 stepsize $=6.62 \mathrm{e}+02$
$-5.511 e-14$
$3.334 e+11$
order = 5
$-1.789 \mathrm{e}-15$
$3.352 \mathrm{e}+11$
$-4.677 e-13 \quad-6.380 e-14$
$6.669 \mathrm{e}+11 \quad 4.120 \mathrm{e}+11$

```
stepsize = 6.62e+02
    -1.548e-14 -2.068e-15
        9.107e+11 4.163e+11
```

Final Statistics..

| lenrw | $=$ | 2000 | leniw | $=$ |
| :--- | :--- | ---: | :--- | :--- |
| llrw | $=$ | 2046 | lliw | $=$ |
| nst | $=$ | 496 | nfe | $=$ |
| nni | $=$ | 640 | nli | $=$ |
| nsetups | $=$ | 90 | 626 | |
| npe | $=$ | 9 | netf | $=$ |
| ncfn | $=$ | 0 | nps | $=$ |
| ncfl | $=$ | 1204 | | |
| | | | | 0 |

6 CVODE Linear Solvers

As previously explained, Newton iteration requires the solution of linear systems of the form (4). There are four CVODE linear solvers currently available for this task: CVDENSE, CVBAND, CVDIAG, and CVSPGMR. The first three are direct solvers and derive their name from the type of approximation used for the Jacobian $J=\partial f / \partial y$. CVDENSE, CVBAND, and CVDIAG work with dense, banded, and diagonal approximations to J, respectively. The fourth CVODE linear solver, CVSPGMR, is an iterative solver. The SPGMR in the name indicates that it uses a scaled preconditioned GMRES method.

To specify a CVODE linear solver, after the call to CVodeMalloc but before any calls to CVode, the user's program must call one of the functions CVDense, CVBand, CVDiag, CVSpgmr, as documented below. The first argument passed to these functions is the CVODE memory pointer returned by CVodeMalloc. A call to one of these functions links the main CVODE integrator to a CVODE linear solver and allows the user to specify parameters which are specific to a particular solver, such as the bandwidths in the CVBAND case.

The use of each of the linear solvers involves certain constants (such as locations of optional outputs in iopt), and possibly some macros, that are likely to be needed in the user code. These are available in the corresponding header file associated with the linear solver, as specified below.

In each case except the diagonal approximation case CVDIAG, the linear solver module used by CVODE is actually built on top of a generic linear system solver, which may be of interest in itself. These generic solvers, denoted DENSE, BAND, and SPGMR, are described separately in Sections 10.3.2-10.3.4.

6.1 Direct Methods

6.1.1 CVDENSE

In using the CVDENSE solver with CVODE, the calling program must include the corresponding header file, with the line

```
#include "cvdense.h"
```

After the call to CVodeMalloc, the user must call the following routine to select the CVDENSE solver:

```
void CVDense(void *cvode_mem, CVDenseJacFn djac, void *jac_data);
```

The CVDENSE solver needs a routine to compute a dense approximation to the Jacobian matrix $J(t, y)$. This routine must be of type CVDenseJacFn, and is communicated through the CVDense formal parameter djac. The user can supply his/her own dense Jacobian routine, or use the difference quotient routine CVDenseDQJac that comes with the CVDENSE solver. To use CVDenseDQJac, the user must pass NULL for the djac parameter.

The CVDense formal parameter jac_data is a pointer that accommodates a user-defined data structure. The CVDENSE solver passes the pointer it receives in the CVDense call to its dense Jacobian function (the djac parameter). This allows the user to create an arbitrary structure with relevant problem data and access it during the execution of the user-supplied Jacobian routine, without using global data in the program. The pointer jac_data may be identical to f_data, if the latter is passed to CVodeMalloc.

The type of the dense Jacobian routine CVDenseJacFn is defined by

```
typedef void (*CVDenseJacFn)(integer N, DenseMat J, RhsFn f, void *f_data,
    real t, N_Vector y, N_Vector fy, N_Vector ewt,
    real h, real uround, void *jac_data,
    long int *nfePtr, N_Vector vtemp1,
    N_Vector vtemp2, N_Vector vtemp3);
```

A user-supplied dense Jacobian routine must load the \mathbb{N} by \mathbb{N} dense matrix J with an approximation to the Jacobian matrix J at the point (t, y). Only nonzero elements need to be loaded into J because J is set to the zero matrix before the call to the Jacobian routine. The type of the J is DenseMat. The accessor macros DENSE ELEM and DENSE_COL allow the user to read and write dense matrix elements without making explicit references to the underlying representation of the Densemat type. $\operatorname{DENSE} \operatorname{ELEM}(A, i, j)$ references the (i, j) th element of the dense matrix $A(i, j=0 . . N-1)$. This macro is for use in small problems in which efficiency of access is not a major concern. Thus, in terms of indices m and n running from 1 to N, the Jacobian element $J_{m, n}$ can be loaded with the statement $\operatorname{DENSE} \operatorname{ELEM}(\mathrm{A}, \mathrm{m}-1, \mathrm{n}-1)=J_{m, n}$. Alternatively, $\operatorname{DENSE} \operatorname{COL}(\mathrm{A}, \mathrm{j})$ returns a pointer to the storage for the j th column of A, and the elements of the j th column are then accessed via ordinary array indexing. Thus $J_{m, n}$ can be loaded with the statements col_n $=\operatorname{DENSE}$ COL (J,n-1); col_n[m-1] $=J_{m, n}$. For large problems, it is more efficient to use DENSE_COL than to use DENSE_ELEM. Note that both of these macros number rows and columns starting from 0 , not 1 . The Densemat type and the accessor macros DENSE_ELEM and DENSE_COL are documented in Sections 10.3.2.1 and 10.3.2.2.

Typically, a user-supplied Jacobian function djac would be expected to access the arguments N , $\mathrm{t}, \mathrm{y}, \mathrm{J}, \mathrm{f}$ _data, and jac_data, at most. The remaining arguments would not typically be accessed, but appear in the call list because they are needed by the function CVDenseDQJac that computes a difference quotient approximation to J, when the user specifies that option.

The CVDENSE module provides three optional outputs. One is the number of calls made to the Jacobian routine. It is placed in iopt [DENSE_NJE], where iopt is the array supplied by the user in the CVodeMalloc call. The other two are the sizes of the real and integer workspaces used by CVDENSE, stored in iopt [DENSELRW] and iopt [DENSE_LIW], respectively. In terms of the problem size N, the actual sizes of these workspaces are $2 N^{2}$ real words and N integer words.

See the reference guide Section 10.2.1 for documentation for the function CVDense and the type CVDenseJacFn, and for a listing of these CVDENSE optional outputs.

6.1.2 CVBAND

In using the CVBAND solver with CVODE, the calling program must include the corresponding header file, with the line

```
#include "cvband.h"
```

After the call to CVodeMalloc, the user must call the following routine to select the CVBAND solver:

```
void CVBand(void *cvode_mem, integer mupper, integer mlower, CVBandJacFn bjac,
    void *jac_data);
```

The upper and lower bandwidths of problem Jacobian (or of the approximation of it to be used in CVODE) are specified in this call through the mupper and mlower parameters.

The CVBAND solver requires a routine to compute a banded approximation to the Jacobian matrix $J(t, y)$. This routine must be of type CVBandJacFn, and is communicated through the CVBand formal parameter bjac. The user can supply his/her own banded Jacobian approximation routine, or use the difference quotient routine CVBandDQJac that comes with the CVBAND solver. To use the CVBandDQJac, the user must pass NULL for bjac.

As in the CVDENSE case, the CVBand formal parameter jac_data is a pointer to a user-defined data structure, which the CVBAND solver passes to the Jacobian function bjac. This allows the user to create an arbitrary structure with relevant problem data and access it during the execution of the user-supplied Jacobian routine, without using global data in the program. The pointer jac_data may be identical to f_data, if the latter is passed to CVodeMalloc.

The type of the band Jacobian routine CVBandJacFn is defined by

```
typedef void (*CVBandJacFn)(integer N, integer mupper, integer mlower,
    BandMat J, RhsFn f, void *f_data, real t,
    N_Vector y, N_Vector fy, N_Vector ewt, real h,
    real uround, void *jac_data, long int *nfePtr,
    N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);
```

A user-supplied band Jacobian routine must load the band matrix J of type BandMat with the elements of the Jacobian $J(t, y)$ at the point (t, y). Only nonzero elements need to be loaded into J because J is preset to zero before the call to the Jacobian routine. The accessor macros BAND_ELEM, BAND_COL, and BAND_COL_ELEM allow the user to read and write band matrix elements without making specific references to the underlying representation of the BandMat type. BAND_ELEM (A,i,j) references the (i, j) th element of the band matrix A. This macro is for use in small problems in which efficiency of access is not a major concern. Thus, in terms of indices m and n running from 1 to N with (m, n) within the band defined by mupper and mlower, the Jacobian element $J_{m, n}$ can be loaded with the statement BAND_ELEM $(A, \mathrm{~m}-1, \mathrm{n}-1)=J_{m, n}$. Alternatively, BAND_COL(A,j) returns a pointer to the diagonal element of the j th column of A, and if we assign this address to real $* \operatorname{col} l_{-j}$, then the ith element of the j th column is given by BAND_COL_ELEM (col_j,i,j). Thus for (m, n) within the band, $J_{m, n}$ can be loaded by setting col_n $=\operatorname{BAND_ COL}(\mathrm{J}, \mathrm{n}-1)$; BAND_COL_ELEM $\left(\operatorname{col} _\mathrm{n}, \mathrm{m}-1, \mathrm{n}-1\right)=J_{m, n}$.

The elements of the j th column can also be accessed via ordinary array indexing, but this approach requires knowledge of the underlying storage for a band matrix of type BandMat. The array col_n can be indexed from - mupper to mlower. For large problems, it is more efficient to use the combination of BAND_COL and BAND_COL_ELEM than to use the BAND_ELEM. As in the dense case, these macros all number rows and columns starting from 0 , not 1 . The BandMat type and the accessor macros BAND_ELEM, BAND_COL, and BAND_COL_ELEM are documented in Sections 10.3.3.1 and 10.3.3.2.

Typically, a user-supplied Jacobian function bjac would be expected to access the arguments N,
 be accessed, but appear in the call list because they are needed by the function CVBandDQJac that computes a difference quotient approximation to J, when the user specifies that option.

The CVBAND module provides three optional outputs. One is the number of calls made to the Jacobian routine. It is placed in iopt[BAND_NJE], where iopt is the array supplied by the user in the CVodeMalloc call. The other two are the sizes of the real and integer workspaces used by CVBAND, stored in iopt[BAND_LRW] and iopt[BAND_IW], respectively. In terms of the problem size N, the actual sizes of these workspaces are (roughly) $N *(2$ mupper +3 mlower +2$)$ real words and N integer words.

See the reference guide Section 10.2 .2 for documentation for the function CVBand and the type CVBandJacFn, and for a listing of these CVBAND optional outputs.

6.1.3 CVDIAG

In using the CVDIAG solver with CVODE, the calling program must include the corresponding header file, with the line

```
#include "cvdiag.h"
```

After the call to CVodeMalloc, the user must call the following routine to select the CVDIAG solver.

```
void CVDiag(void *cvode_mem);
```

The CVDIAG solver is the simplest of all the current CVODE linear solvers. The CVDiag routine receives only the CVODE memory pointer returned by CVodeMalloc. CVDIAG uses an approximate diagonal Jacobian formed by way of a difference quotient. The user does not have the option to supply a routine to compute an approximate diagonal Jacobian.

The CVDIAG module provides two optional outputs. These are the sizes of the real and integer workspaces used by CVDIAG, stored in iopt[DIAG_LRW] and iopt[DIAG_LIW], respectively.

In terms of the problem size N, the actual sizes of these workspaces are $3 N$ real words and no integer words. The number of approximate diagonal Jacobians formed is equal to iopt [NSETUPS].

See the reference guide Section 10.2 .3 for documentation of the function CVDiag and the CVDIAG optional outputs.

6.2 Iterative Methods

6.2.1 CVSPGMR

The CVSPGMR solver uses a scaled preconditioned GMRES iterative method to solve the linear system (4). With this SPGMR method, preconditioning can be done on the left only, on the right only, on both the left and the right, or not at all. For a given preconditioner matrix, the merits of left vs. right preconditioning are unclear in general, and the user should experiment with both choices. Performance will differ because the inverse of the left preconditioner is included in the linear system residual whose norm is being tested in the SPGMR algorithm. As a rule, however, if the preconditioner is the product of two matrices, we recommend that preconditioning be done either on the left only or the right only, rather than using one factor on each side.

In using the CVSPGMR solver with CVODE, the calling program must include two associated header files, with the lines

```
#include "iterativ.h"
#include "cvspgmr.h"
```

After the call to CVodeMalloc, the user must call the following routine to select the CVSPGMR solver.

```
void CVSpgmr(void *cvode_mem, int pretype, int gstype, int maxl, real delt,
    CVSpgmrPrecondFn precond, CVSpgmrPSolveFn psolve, void *P_data);
```

The call to CVSpgmr is used to communicate the type of preconditioning (pretype), the user's preconditioner setup routine (precond), the preconditioner solve routine (psolve), and the type of GramSchmidt procedure (gstype). The pretype parameter can be NONE, LEFT, RIGHT, or BOTH. (These constants are defined in iterativ.h.) If no preconditioning is desired (pass NONE for pretype), then both precond and psolve are ignored. Otherwise, a preconditioner solve function psolve is required. Regardless of the type of preconditioning, a preconditioner setup function precond is not required. The gstype parameter can be MODIFIED_GS or CLASSICAL_GS (these constants are also defined in iterativ.h) according to whether the user wants the CVSPGMR solver to use modified or classical Gram-Schmidt orthogonalization.

The call to CVSpgmr is also used to communicate two optional inputs to the CVSPGMR solver. One is maxl, the maximum dimension of the Krylov subspace to be used. The other is delt, a factor by which the GMRES convergence test constant is reduced from the Newton iteration test constant. Both of these inputs have defaults, which can be invoked by setting the actual parameter to zero in the call. The actual default values are 5 for the maximum Krylov dimension, and .05 for the test constant factor.

As in the dense and band cases, CVSpgmr takes in a parameter P_data, a pointer to a user-defined data structure, which the CVSPGMR solver passes to the preconditioner setup and solve functions precond and psolve. This allows the user to create an arbitrary structure with relevant problem data and access it during the execution of the user-supplied preconditioner routines without using global data in the program. The pointer P_data may be identical to f_data, if the latter is passed to

CVodeMalloc.

If any type of preconditioning is to be done within the SPGMR method, then the user must supply a preconditioner solve routine psolve. This function has type CVSpgmrPSolveFn as defined by

```
typedef int (*CVSpgmrPSolveFn)(integer N, real t, N_Vector y, N_Vector fy,
    N_Vector vtemp, real gamma, N_Vector ewt,
    real delta, long int *nfePtr, N_Vector r,
    int lr, void *P_data, N_Vector z);
```

If P_{1} is the left preconditioner and P_{2} is the right preconditioner, then the user's psolve function must solve $P_{1} \mathrm{z}=\mathrm{r}$ if lr is LEFT or $P_{2} \mathrm{z}=\mathrm{r}$ if lr is RIGHT.

The evaluation and preprocessing of any Jacobian-related data needed by the user's preconditioner solve routine is done in the optional user-supplied routine precond. This routine must be of type CVSpgmrPrecondFn as defined by

```
typedef int (*CVSpgmrPrecondFn)(integer N, real t, N_Vector y, N_Vector fy,
    bool jok, bool *jcurPtr, real gamma,
    N_Vector ewt, real h, real uround,
    long int *nfePtr, void *P_data,
    N_Vector vtemp1, N_Vector vtemp2,
    N_Vector vtemp3);
```

This routine is not called in advance of every psolve call, but rather is called only as often as needed to achieve convergence in the Newton iteration. The jok argument provides for the re-use of Jacobian data in psolve. When jok == FALSE, Jacobian data should be computed from scratch, but when jok == TRUE, Jacobian data saved earlier can be retrieved and used to form the preconditioner matrices (with the current $\gamma=$ gamma).

The CVSPGMR solver provides six optional outputs. The total number of calls to precond is given in iopt [SPGMR_NPE], and the number of calls to psolve is in iopt [SPGMR_NPS]. The number of linear iterations is in iopt[SPGMR_NLI], and the number of linear convergence failures is in iopt[SPGMR_NCFL]. The sizes of the real and integer workspaces used by CVSPGMR are stored in iopt [SPGMR_LRW] and iopt [SPGMRLIW], respectively. In terms of the problem size N and the maximum Krylov dimension $\ell_{\max }$, the actual sizes of these workspaces are $N *\left(\ell_{\max }+5\right)+\ell_{\max } *\left(\ell_{\max }+4\right)+1$ real words and no integer words.

See the reference guide Section 10.2.4 for documentation of the function CVSpgmr, the types CVSpgmrPrecondFn and CVSpgmrPSolveFn of the user-supplied preconditioner functions, and the optional outputs from CVSPGMR.

For users interested in the generic SPGMR solver used by CVSPGMR, a note of caution is in order: The routines in SPGMR have arguments l_max, delta, psolve, P_data, which are not the same as the CVSpgmr arguments maxl, delt, psolve, P_data, although the names are the same or very similar. (The arguments pretype and gstype are identical in meaning in both contexts.) For more on the generic SPGMR solver, see Section 10.3.4.

7 Types real and integer

7.1 Description

The llnltyps.h file contains the definitions of the types real and integer. CVODE uses the type real for all floating point data and the type integer for all problem size-related data such as the actual problem size, the bandwidths in the CVBAND solver, and the integers stored in the length N pivot arrays in both the CVDENSE and CVBAND solvers. These types make it easy to have CVODE solve problems of virtually any size using single or double precision arithmetic. The type real can be double or float and the type integer can be int or long int. The default settings are double and int.

7.2 Changing Type real

The user can change the precision of CVODE arithmetic from double to single by changing the typedef

```
typedef double real; to typedef float real;
```

and by changing the macro definitions

```
#define FLOAT 0 to #define FLOAT 1
#define DOUBLE 1 #define DOUBLE 0
```

in llnltyps.h. These macro definitions are used to enable llnltyps.h to branch on the setting of real at compile time.

Changing from double precision to single precision arithmetic also requires minor changes in the implementation file llnlmath.c for the LLNLMATH module which CVODE uses. The RPowerR and RSqrt functions compute a real number raised to a real power and the square root of a number, respectively. The default implementation of these routines calls standard C math library functions which do double precision arithmetic. These implementations should be changed to call single precision routines which are available on the user's machine (if the user wants CVODE to perform only single precision arithmetic).

Within CVODE, real constants are set by way of a macro called RCONST. It is this macro that needs the ability to branch on the setting for real. In ANSI C, a floating point constant with no suffix is stored as a double. Placing the suffix "F" at the end of a floating point constant makes it a float. For example,

```
#define A 1.0
#define B 1.0F
```

defines A to be a double constant 1.0 and B to be a float constant 1.0. The macro call RCONST (1.0) expands to 1.0 if real is double and it expands to 1.0 F if real is float. CVODE uses the RCONST macro for all its floating point constants.

A user program which uses the type real and the RCONST macro to handle floating point constants is precision-independent except for any calls to single or double precision standard math library functions. (Our demonstration programs use real but not RCONST.) Users can, however, use the type double or float in their code (assuming the typedef for real matches this choice). Thus, a previously existing piece of ANSI C code can use CVODE without modifying the code to use real.

7.3 Changing Type integer

CVODE uses the type integer for all quantities related to problem size. On some machines the size of an int and a long int are the same, but this is not always the case. The size int may be too small on a machine for a very large problem. In this case, the user should change the typedef

```
typedef int integer; to typedef long int integer;
```

and the macro definitions

```
#define INT 1 to #define INT 0
#define LONG_INT O
#define LONG_INT 1
```

in llnltyps.h. In terms of the problem size N, and the bandwidths mlower and mupper in the case of the band module CVBAND, the largest integer that must be accommodated by the integer type is $N+$ mlower + mupper in the band case, and N in all other cases. The user can use the type int or long int in his/her code instead of integer (assuming the typedef for integer matches this choice).

8 Demonstration Programs

As an aid to users of the CVODE package, two demonstration programs are provided as part of the package. These are more complex in their usage of CVODE than the sample programs given above, and include some self-checking for accuracy. They exercise all of the major method options of CVODE, and so provide a validation check for recipients of the package.

8.1 Direct Demonstration Program, cvdemd.c

This program solves two different problems, and includes self-checking features in both cases.
The first problem is the Van der Pol oscillator problem, a second-order ODE converted to two first-order ODEs, with a parameter that makes it mildly stiff. It is solved with eight different method choices: Adams and BDF methods, each in combination with functional iteration, a dense user-supplied Jacobian, a dense difference-quotient Jacobian, and a diagonal Jacobian approximation. Global errors are checked by stopping at two of the zeros of the exact solution.

The second problem is the semi-discrete form of a simple advection PDE in two dimensions, giving a linear ODE system of size 25 . It has an analytic solution, and global errors are measured at each output time. It is also solved with eight different method choices: Adams and BDF methods, each in combination with functional iteration, a banded user-supplied Jacobian, a banded difference-quotient Jacobian, and a diagonal Jacobian approximation.

8.2 Krylov Demonstration Program, cvdemk.c

This program solves a 6 -species predator-prey population model, based on a system of PDEs with diffusion and nonlinear species interaction rates in two dimensions. The PDEs are semi-discretized on a 6×6 mesh, giving an ODE system of size 216. This is solved with the BDF method and Newton iteration using the CVSPGMR linear solver. The preconditioner used is the product of two matricesone based on a fixed number of Gauss-Seidel iterations using the diffusion coefficients only, and the other being a block-diagonal matrix based on the Jacobian of the interaction rates only. The latter uses a block-grouping scheme in which the 36 spatial mesh points are grouped into 4 groups, and only one 6×6 Jacobian block is computed in each group. Four different cases are run. The preconditioner is applied to both the left and right sides, and in each case, both modified and classical Gram-Schmidt options are run. The program prints performance statistics at each output point, and the full solution vector at selected output points.

The preconditioner setup routine Precond in this program is intended to be usable as a prototype for the general case of a block-diagonal preconditioner. It generates the blocks of the preconditioner by way of difference quotients, and calls to a separate routine that evaluates a block of the interaction rate vector at a single spatial point. It makes use of block-grouping information that is also completely general. A separate routine is used to set that information, based on a simple partitioning of the rectangular grid.

9 Overall Structure

The CVODE package is written in the ANSI C language. The following summarizes the basic structure of the package, although knowledge of this structure is not necessary for its use.

The overall organization of the CVODE package is shown in Figure 2. The basic elements of the structure are a module for the basic integration algorithm and a set of modules for the solution of linear systems that arise in the case of a stiff system. The central integration module CVode, implemented in the files cvode.h and crode.c, deals with the evaluation of integration coefficients, the functional or Newton iteration process, estimation of local error, selection of stepsize and order, and interpolation to user output points, among other issues. Although this module contains logic for the basic Newton iteration algorithm, it has no knowledge of the method being used to solve the linear systems that arise. For any given user problem, one of the linear system modules is specified, and is then invoked as needed during the integration.

At present, the package includes the following four CVODE linear system modules:

- CVDENSE: LU factorization and backsolving with dense matrices;
- CVBAND: LU factorization and backsolving with banded matrices;
- CVDIAG: an internally generated diagonal approximation to the Jacobian;
- CVSPGMR: scaled preconditioned GMRES method.

This set of linear solver modules is intended to be expanded in the future as new algorithms are developed.

In the case of the direct CVDENSE and CVBAND methods, the package includes an algorithm for the approximation of the Jacobian by difference quotients, but the user also has the option of supplying the Jacobian (or an approximation to it) directly. In the case of CVSPGMR, the preconditioning must be supplied by the user, in two phases - setup (preprocessing of Jacobian data) and solve. While there is no default choice of preconditioner analogous to the difference quotient approximation in the direct case, the references [2]-[3], together with the example and demonstration programs included with CVODE, offer considerable assistance in building preconditioners.

Each CVODE linear solver module consists of four routines, devoted to (1) memory allocation and initialization, (2) setup of the matrix data involved, (3) solution of the system, and (4) freeing of memory. The setup and solution phases are separate because the evaluation of Jacobians and preconditioners is done only periodically during the integration, as required to achieve convergence. The call list within the central CVODE module to each of the four associated functions is fixed, thus allowing the central module to be completely independent of the linear system method.

These modules are also decomposed in another way. Each of the modules CVDENSE, CVBAND, and CVSPGMR is a set of interface routines built on top of a generic solver module, named DENSE, BAND, and SPGMR, respectively. The interfaces deal with the use of these methods in the CVODE

| LLNLTYPS |
| :--- | :--- |
| llnltyps.h |

| LLNLMATH |
| :---: |
| llnlmath.h, llnlmath.c |

| VECTOR |
| :---: |
| vector.h, vector.c |

Figure 2: Overall structure diagram of the CVODE package. Modules specific to CVODE are distinguished by rounded boxes, while generic solver and auxiliary modules are in unrounded boxes.
context, whereas the generic solver is independent of the context. While the generic solvers here were generated with CVODE in mind, our intention is that they be usable in other applications as generalpurpose solvers. This separation also allows for any generic solver to be replaced by an improved version, with no necessity to revise the CVODE package elsewhere.

Variation in the types of scalar variables is handled by way of a separate header file llnltyps.h which contains type definitions for real and integer. The default settings for real and integer are double and int, respectively. With this arrangement, the precision can be changed from double to single with minor changes to llnltyps.h and llnlmath.c.

The vectors y, f, etc. of length N in CVODE are objects of type N_Vector. This type declaration is contained in a separate module in the CVODE package, along with a collection of vector kernels which are used by both the central integrator module and the linear solver modules. These kernels perform operations such as linear sums, dot products, and weighted norms. This arrangement was made in anticipation of a multiprocessor extension of CVODE, in which the vector data would be distributed, with the N_Vector type containing a description of the data distribution. Changes in the N_Vector type would necessitate rewriting the vector kernels, and some parts of the dense and band linear solvers (both the CVODE-specific and generic parts); parts of the example programs which perform N_Vector accesses might also have to be revised.

All state information used by CVODE to solve a given problem is saved in a structure, and a pointer to that structure is returned to the user. There is no global data in the CVODE package, and so in this respect it is reentrant. State information specific to the linear solver is saved in separate structure, a pointer to which resides in the CVODE memory structure. The reentrancy of CVODE was motivated by the anticipated multicomputer extension, but is also essential in a uniprocessor setting where two or more problems are solved by intermixed calls to the package from one user program.

Table 1 below is a complete list of files in the CVODE package. Header and source files are described as a single unit.

In Table 2 below, we list the vector kernels in the VECTOR module within the CVODE package. There are 16 such kernels, excluding the debugging tool N_VPrint. All kernel names begin with "N_" to indicate that the kernels are operations on length N vectors (of type N_Vector), where N is the problem size. The table also shows, for each kernel, which of the code modules uses the kernel. The CVode column shows kernel usage within the main CVODE integrator module, while the remaining four columns show kernel usage within each of the four CVODE linear solvers. There is one subtlety in the CVSPGMR column hidden by the table. The dot product kernel N_VDotProd, for example, is not called within the implementation file cvspgmr.c for the CVSPGMR solver, yet we have marked it as "used" by CVSPGMR. This is because N_VDotProd is called within the implementation file spgmr.c for the generic SPGMR solver upon which the CVSPGMR solver is implemented. This issue does not arise for the other three CVODE linear solvers because the generic DENSE and BAND solvers (used in the implementation of CVDENSE and CVBAND) do not make calls to any vector kernels and CVDIAG is not implemented using a generic diagonal solver. At this point, we should emphasize that the CVODE user does not need to know anything about the usage of vector kernels by the CVODE code modules in order to use CVODE. The information is presented as implementation details for the interested reader, and in anticipation of parallel extensions to CVODE.

| File(s) | Description and/or Contents |
| :--- | :--- |
| llnltyps.h | types real, integer, and bool; constants FALSE, TRUE |
| llnlmath.h, .c | Math package for real precision arithmetic
 MIN, MAX, ABS, SQR, UnitRoundoff, RPowerI, RPowerR, RSqrt |
| vector.h, .c | Generic vector package
 Type N_Vector, N_VIth, N_VDATA
 N_Vector kernels including N_VNew, N_VFree |
| cvode.h, .c | Central CVODE integrator module
 CVodeMalloc, CVode, CVodeFree, CVodeDky |
| cvdense.h, .c | CVODE dense linear solver CVDENSE
 CVDense, CVDenseDQJac functions |
| cvband.h, .c | CVODE band linear solver CVBAND
 CVBand, CVBandDQJac functions |
| cvdiag.h, .c | CVODE diagonal linear solver CVDIAG
 CVDiag function |
| cvspgmr.h, .c | CVODE GMRES linear solver CVSPGMR
 CVSpgmr function |
| dense.h, .c | Generic DENSE linear solvers: large, small dense matrices
 Large: Type DenseMat, DENSE_ELEM, DENSE_COL
 Small: denalloc, gefa, gesl, denaddI, denfree |
| band.h, .c | Generic BAND linear solvers: large, small band matrices
 Large: Type BandMat, BAND_ELEM, BAND_COL, BAND_COL_ELEM
 Small: bandalloc, gbfa, gbsl, bandfree |
| iterativ.h, .c | Items common to generic iterative linear solvers
 ModifiedGS, ClassicalGS, QRfact, QRsol routines |
| spgmr.h, .c | Generic preconditioned GMRES linear solver |

Table 1: List of files in CVODE package

| Kernel | CVode | CVDENSE | CVBAND | CVDIAG | CVSPGMR |
| :--- | :---: | :---: | :---: | :---: | :---: |
| N_VNew | X | | | X | X |
| N_VFree | X | | | X | X |
| N_VLinearSum | X | X | | X | X |
| N_VConst | X | | | | X |
| N_VProd | X | | | X | X |
| N_VDiv | X | | | X | X |
| N_VScale | X | X | X | X | X |
| N_VAbs | X | | | | |
| N_VInv | X | | | X | |
| N_VAddConst | X | | | X | |
| N_VDotProd | | | | | X |
| N_VMaxNorm | X | | | | |
| N_VWrmsNorm | X | X | X | | X |
| N_VMin | X | | | | |
| N_VCompare | | | | X | |
| N_VInvTest | | | | X | |
| N_VPrint | | | | | |

Table 2: List of vector kernels and usage by CVODE code modules

10 Reference Guide

10.1 Main CVODE Integrator

The following seven sections contain documentation and declarations from the header file cvode.h. In the first, the options listed are the basic solution method parameters that are input to CVodeMalloc and CVode. Next is the specification of the right-hand side function f. The remaining sections describe the call lists for CVodeMalloc, CVode, CVodeDky, and CVodeFree, and the list of optional inputs and outputs.

10.1.1 Options


```
enum { ADAMS, BDF }; /* lmm */
enum { FUNCTIONAL, NEWTON }; /* iter */
```

```
enum { SS, SV }; /* itol */
enum { NORMAL, ONE_STEP }; /* itask */
```


10.1.2 The Right Hand Side Function, Type RhsFn


```
typedef void (*RhsFn)(integer N, real t, N_Vector y, N_Vector ydot,
    void *f_data);
```


10.1.3 CVodeMalloc

void *CVodeNalloc (integer N, RhsFn f, real to, N_Vector y0, int lmm, int iter, int itol, real *reltol, void *abstol, void *f_data, FILE *errfp, bool optIn, long int iopt[], real ropt[], void *machEnv);

10.1.4 CVode

/**
*

* Function $: ~ C V o d e ~$

int CVode(void *cvode_mem, real tout, $N_{\text {_ }}$ Vector yout, real *t, int itask);

```
/* CVode return values */
```

enum \{ SUCCESS=0, CVODE_NO_MEM=-1, ILL_INPUT=-2, TOO_MUCH_WORK=-3,
TOO_MUCH_ACC=-4, ERR_FAILURE=-5, CONV_FAILURE=-6,
SETUP_FAILURE=-7, SOLVE_FAILURE=-8 \};

10.1.5 CVodeDky


```
* DKY_NO_MEM : The cvode_mem argument was NULL.
*******************************************************************/
    *
```

int CVodeDky (void *cvode_mem, real t, int k, N_Vector dky);
/* CVodeDky return values */
enum \{ OKAY=0, BAD_K=-1, BAD_T=-2, BAD_DKY=-3, DKY_NO_MEM=-4 \};

10.1.6 CVodeFree

```
/******************************************************************
    * *
    * Function : CVodeFree *
    *----------------------------------------------------------------------
    * CVodeFree frees the problem memory cvode_mem allocated by *
    * CVodeMalloc. Its only argument is the pointer cvode_mem *
    * returned by CVodeMalloc. *
*
*
    ******************************************************************/
```

void CVodeFree(void *cvode_mem);

10.1.7 Optional Inputs and Outputs

10.2 CVODE Linear Solvers

Each of the linear system solvers in the CVODE package (of which there are currently four) is described in the next sections.

10.2.1 CVDENSE

The following sections contain documentation and declarations from the header file cvdense.h.

10.2.1.1 CVDense

/**
$*$
$*$ Function $: ~ C V D e n s e ~$ *
void CVDense(void *cvode_mem, CVDenseJacFn djac, void *jac_data);

10.2.1.2 Type CVDenseJacFn


```
* for (j=0; j < N; j++) { *
* col_j = DENSE_COL(J,j)
    col_J = DENSE_COL(J,j);
        generate J_ij = the (i,j)th Jacobian element
        col_j[i] = J_ij;
    }
}
(2) (without macros - explicit data structure references)
    for (j=0; j < N; j++) {
    col_j = (J->data)[j];
    for (i=0; i < N; i++) {
        generate J_ij = the (i,j)th Jacobian element
        col_j[i] = J_ij;
    }
}
The DENSE_ELEM(A,i,j) macro is appropriate for use in small *
* problems in which efficiency of access is NOT a major concern. *
f is the right hand side function for the ODE problem.
f_data is a pointer to user data to be passed to f, the same
        as the F_data parameter passed to CVodeMalloc.
t is the current value of the independent variable.
y is the current value of the dependent variable vector,
    namely the predicted value of y(t).
fy is the vector f(t,y).
ewt is the error weight vector.
h is a tentative step size in t.
uround is the machine unit roundoff.
jac_data is a pointer to user data - the same as the jac_data *
    parameter passed to CVDense.
nfePtr is a pointer to the memory location containing the *
CVODE problem data nfe = number of calls to f. The Jacobian *
routine should update this counter by adding on the number *
of f calls made in order to approximate the Jacobian, if any.
For example, if the routine calls f a total of N times, then
the update is *nfePtr += N.
vtemp1, vtemp2, and vtemp3 are pointers to memory allocated *
for vectors of length N which can be used by a CVDenseJacFn *
as temporary storage or work space.
*
*
```

**/
typedef void (*CVDenseJacFn) (integer N, DenseMat J, RhsFn f, void *f_data, real t, N_Vector y, N_Vector fy, N_Vector ewt, real h, real uround, void *jac_data, long int *nfePtr, N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);

10.2.1.3 Statistics

10.2.2 CVBAND

The following sections contain documentation and declarations from the header file cvband.h.

10.2.2.1 CVBand

void CVBand(void *cvode_mem, integer mupper, integer mlower, CVBandJacFn bjac, void *jac_data);

10.2.2.2 Type CVBandJacFn

> typedef void (*CVBandJacFn)(integer N, integer mupper, integer mlower, BandMat J, RhsFn f, void *f_data, real t, N_{-}Vector y, N_{-}Vector fy, $N_{-} V e c t o r ~ e w t, ~ r e a l ~ h, ~$ real uround, void *jac_data, long int *nfePtr, N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);

10.2.2.3 Statistics

10.2.3 CVDIAG

The following sections contain documentation and declarations from the header file cvdiag.h.

10.2.3.1 CVDiag


```
void CVDiag(void *cvode_mem);
```


10.2.3.2 Statistics

```
/******************************************************************
    * *
    * CVDIAG solver statistics indices *
    *-----------------------------------------------------------------------
    * The following enumeration gives a symbolic name to each *
    * CVDIAG statistic. The symbolic names are used as indices into *
    * the iopt and ropt arrays passed to CVodeMalloc. *
    * The CVDIAG statistics are: *
* *
    * iopt[DIAG_LRW] : size (in real words) of real workspace *
    * vectors used by this solver. *
    * *
    * iopt[DIAG_LIW] : size (in integer words) of integer *
    * workspace vectors used by this solver. *
    * *
    * The number of diagonal approximate Jacobians formed is equal *
    * to the number of CVDiagSetup calls. This number is available *
    * in cv_iopt[NSETUPS]. *
    * *
    ******************************************************************/
```


10.2.4 CVSPGMR

The following sections contain documentation and declarations from the header file cvspgmr.h.

10.2.4.1 CVSpgmr

| $*$ | pointer is passed to precond and psolve every time | |
| :--- | :--- | :--- |
| $*$ | these routines are called. | |
| $*$ | | $*$ |
| $* / ~$ | | |

void CVSpgmr(void *cvode_mem, int pretype, int gstype, int maxl, real delt, CVSpgmrPrecondFn precond, CVSpgmrPSolveFn psolve, void *P_data);

10.2.4.2 Type CVSpgmrPrecondFn

| data needs to be recomputed, as follows: | | | * |
| :---: | :---: | :---: | :---: |
| * | | ```jok == FALSE means recompute Jacobian-related data from scratch.``` | * |
| | | | |
| | | jok == TRUE means that Jacobian data, if saved from | |
| * | | previous Precond call, can be reused | * |
| * | | (with the current value of gamma). | |
| * | | A Precond call with jok == TRUE can only occur after | |
| * | | a call with jok == FALSE. | * |
| * | | | |
| | jcurPtr | is a pointer to an output integer flag which is | * |
| | | to be set by Precond as follows: | |
| * | | Set *jcurPtr = TRUE if Jacobian data was recomputed. | |
| * | | Set *jcurPtr = FALSE if Jacobian data was not | |
| * | | recomputed, but saved data was reused. | |
| * | | | |
| | gamma | is the scalar appearing in the Newton matrix. | |
| * | | | |
| | ewt | is the error weight vector. | |
| * | | | |
| * | | is a tentative step size in t . | |
| * | | | * |
| | uround | is the machine unit roundoff. | * |
| * | | | |
| | nfePtr | is a pointer to the memory location containing the | |
| * | | CVODE problem data nfe $=$ number of calls to f. | |
| * | | The Precond routine should update this counter by | |
| * | | adding on the number of f calls made in order to | * |
| * | | approximate the Jacobian, if any. For example, if | * |
| * | | | * |
| * | | 俍 | * |
| * | | | * |
| | P_data | s a pointer to user data - the same as the P_data | * |
| | | parameter passed to CVSpgmr. | * |
| * | | | * |
| | vtemp1 | vtemp2, and vtemp3 are pointers to memory allocated | * |
| | | for vectors of length N which can be used by | * |
| * | | CVSpgmrPrecondFn as temporary storage or work space. | |
| * | | | * |
| * | | | * |
| | Returned | value: | * |
| | The valu | ue to be returned by the Precond function is a flag | |
| | indicat | ing whether it was successful. This value should be | * |
| | 0 if | f successful, | * |
| | $>0 \mathrm{for}$ | for a recoverable error (step will be retried), | |
| | <0 for | for an unrecoverable error (integration is halted). | * |
| | | | |
| | | | |

[^0]
10.2.4.3 Type CVSpgmrPSolveFn


```
typedef int (*CVSpgmrPSolveFn)(integer N, real t, N_Vector y, N_Vector fy,
    N_Vector vtemp, real gamma, N_Vector ewt,
    real delta, long int *nfePtr, N_Vector r,
    int lr, void *P_data, N_Vector z);
```


10.2.4.4 Statistics

10.3 Generic Packages

In this section, we describe four code modules that are included in CVODE, but which are of potential use as generic packages in themselves, either in conjunction with the use of CVODE or separately. These modules are:

- The VECTOR package, which includes the N_Vector type and a collection of kernels that perform operations on N_Vector vectors.
- The DENSE matrix package, which includes the matrix type DenseMat, macros and functions for DenseMat matrices, and functions for small dense matrices treated as simple array types.
- The BAND matrix package, which includes the matrix type BandMat, macros and functions for BandMat matrices, and functions for small band matrices treated as simple array types.
- The SPGMR package, which includes a solver for the scaled preconditioned GMRES method.

For the sake of space, the functions for DenseMat and BandMat matrices and the functions in SPGMR are only summarized briefly, since they are less likely to be of direct use in connection with CVODE. The functions for small dense and band matrices are fully described, because we expect that they will be useful in the implementation of preconditioners used with the combination of CVODE and the CVSPGMR solver.

10.3.1 VECTOR

The following sections contain documentation and declarations from the header file vector.h.

10.3.1.1 Type N_Vector


```
typedef struct {
    integer length;
    real *data;
} *N_Vector;
```


10.3.1.2 N_Vector Accessor Macros


```
#define N_VMAKE(v, v_data, v_len) v = (N_Vector) malloc(sizeof(*v)); \
                        v->data = v_data; \
                        v->length = v_len
#define N_VDISPOSE(v) free(v)
#define N_VDATA(v) (v->data)
#define N_VLENGTH(v) (v->length)
#define N_VIth(v,i) ((v->data)[i])
```


10.3.1.3 N_Vector Kernels

10.3.1.3.1 Memory Allocation and Deallocation

```
/****************************************************************
*
    * Memory Allocation and Deallocation: N_VNew, N_VFree *
*
*
    ***************************************************************/
```

```
/****************************************************************
    * *
    * Function : N_VNew *
    * Usage : x = N_VNew(N, machEnv); *
    *-----------------------------------------------------------------*
    * Returns a new N_Vector of length N. The parameter machEnv
    * is a pointer to machine environment-specific information.
    * It is ignored in the sequential machine environment and the *
    * user in this environment should simply pass NULL for this *
    * argument. If there is not enough memory for a new N_Vector, *
    * then N_VNew returns NULL.
    *
                                    *
    ***************************************************************/
N_Vector N_VNew(integer n, void *machEnv);
```

```
/***************************************************************
    * *
    * Function : N_VFree *
    * Usage : N_VFree(x); *
    *-------------------------------------------------------------------**
    * *
    * Frees the N_Vector x. It is illegal to use x after the call *
    * N_VFree(x).
* *
    ***************************************************************/
```

void N_VFree(N_Vector x);
10.3.1.3.2 Arithmetic

```
/***************************************************************
    * *
    * N_Vector Arithmetic: N_VLinearSum, N_VConst, N_VProd, *
```



```
    ***************************************************************/
/***************************************************************
    * *
    * Function : N_VLinearSum *
    * Operation : z = a x + b y *
    * ***************************************************************
```

void N_{-}VLinearSum(real a, N_{-}Vector x, real b, N_{-}Vector $y, N_{-} V e c t o r z$);
$/ *$
* *
* Function : N_VConst *
* Operation : $z[i]=c$ for $i=0,1, \ldots, N-1$ *
* *
***/

```
void N_VConst(real c, N_Vector z);
```

```
/***************************************************************
    *
    * Function : N VProd *
    * Operation : z[i] = x[i] * y[i] for i=0, 1, ..., N-1 *
* * 
    ***************************************************************/
void N_VProd(N_Vector x, N_Vector y, N_Vector z);
```

$/ *$
*
* Function : N VDiv *
* Operation : $z[i]=x[i] / y[i]$ for $i=0,1, \ldots, N-1$ *
*
***/

$/ *$
*
*
* Function : N_VScale *
* Operation : z = c x *
$*$
$* / ~$
$*$
$* / ~$

$/ *$
* *
* Function : N_VAbs *
* Operation $: z[i]=|x[i]|, \quad$ for $i=0,1, \ldots, N-1 \quad$ *
*
*

void N_{-}VAbs (N_Vector x, N_{-}Vector z);
$/ * ~+~$
* *
* Function : N_VInv *
* Operation $: ~ z[i]=1.0 / x[i]$ for $i=0,1, \ldots, N-1 \quad$ *

* *
* This routine does not check for division by 0. It should be *
* called only with an N_{-}Vector x which is guaranteed to have *
* all non-zero components.
* *
***/
void N_VInv(N_Vector x, N_{-}Vector z);
$/ * ~$
* *
* Function : N_VAddConst *

```
* Operation : z[i] = x[i] + b for i = 0, 1, ..., N-1 *
*
***********************************************************************
void N_VAddConst(N_Vector x, real b, N_Vector z);
```


10.3.1.3.3 Measures

$/ * ~$
* *
* Function : N_VDotProd
${ }_{*}^{*}$
* Usage : dotprod = N_VDotProd(x, y) ; *

* Returns the value of the ordinary dot product of x and y :
* $\rightarrow \operatorname{sum}(i=0$ to $N-1)\{x[i]$ * $y[i]\}$
* Returns 0.0 if $\mathrm{N}<=0$.
*

real N_VDotProd(N_Vector x, N_{-}Vector y);

real N_VMaxNorm(N_Vector x);

```
/***************************************************************
    * *
    * Function : N_VWrmsNorm *
    * Usage : wrmsnorm = N_VWrmsNorm(x, w); *
    *--------------------------------------------------------------------
    * *
    * Returns the weighted root mean square norm of x with *
    * weight vector w:
*
    * -> sqrt [(sum (i=0 to N-1) {(x[i] * w[i])^2}) / N] *
```

```
* *
* Returns 0.0 if N <= 0. *
*
********************************************************************/
real N_VWrmsNorm(N_Vector x, N_Vector w);
/****************************************************************
    *
    * Function : N_VMin *
    * Usage : min = N_VMin(x); *
    *-----------------------------------------------------------------*
    * *
    * Returns min x[i] if N > 0 and returns 0.0 if N <= 0. *
    * i *
    * *
    ***************************************************************/
real N_VMin(N_Vector x);
```


10.3.1.3.4 Miscellaneous

```
/***************************************************************
    *
    * Miscellaneous : N_VCompare, N_VInvTest *
    * *
    ***************************************************************/
/***************************************************************
    *
    * Function : N_VCompare
    * Operation : z[i] = 1.0 if |x[i]| >= c i = 0, 1, ...,N-1 N
    * 0.0 otherwise *
* *
    ***************************************************************/
void N_VCompare(real c, N_Vector x, N_Vector z);
/***************************************************************
    * *
    * Function : N_VInvTest *
    * Operation : z[i] = 1.0 / x[i] with a test for x[i]==0.0 *
    * before inverting x[i]. *
    *------------------------------------------------------------------
    * *
    * This routine returns TRUE if all components of x are *
    * non-zero (successful inversion) and returns FALSE *
    * otherwise. *
    * *
    ***************************************************************/
```

bool $\mathbb{N}_{-} V$ InvTest $\left(N_{-}\right.$Vector x, N_{-}Vector $\left.z\right)$;
10.3.1.3.5 Debugging Tools

void $N_{\text {_ }}$ VPrint(N_{-}Vector x);

10.3.2 DENSE

The following sections contain documentation and declarations from the header file dense.h.


```
* DenseFreePiv, respectively. The DenseFactor and DenseBacksolve *
* routines perform the actual solution of a dense linear system. *
* Note that the DenseBacksolve routine has a parameter b of type *
* N_Vector. The current implementation makes use of a machine *
* environment-specific macro (N_VDATA) which may not exist for *
* other implementations of the type N_Vector. Thus, the *
* implementation of DenseBacksolve may need to change if the *
* type N_Vector is changed. *
* *
* Routines that work with real ** begin with "den" (except for *
* the factor and solve routines which are called gefa and gesl, *
* respectively). The underlying matrix storage is described in *
* the documentation for denalloc. *
* *
******************************************************************/
```


10.3.2.1 Type DenseMat

typedef struct \{ integer size; real **data;
\} *DenseMat;

10.3.2.2 DenseMat Accessor Macros

```
/******************************************************************
    * *
    * Macro : DENSE_ELEM *
    * Usage : DENSE_ELEM(A,i,j) = a_ij; OR *
    * a_ij = DENSE_ELEM(A,i,j); *
    *--------------------------------------------------------------------------
    * DENSE_ELEM(A,i,j) references the (i,j)th element of the N by N *
    * DenseMat A, 0<= i,j<= N-1.
*
```

```
**************************************************************************
#define DENSE_ELEM(A,i,j) ((A->data)[j][i])
/*********************************************************************
    * Macro : DENSE_COL
    * Usage : col_j = DENSE_COL(A,j); *
    *----------------------------------------------------------------------
    * DENSE_COL(A,j) references the jth column of the N by N *
    * DenseMat A, 0 <= j <= N-1. The type of the expression *
    * DENSE_COL(A,j) is real *. After the assignment in the usage *
    * above, col_j may be treated as an array indexed from 0 to N-1. *
    * The (i,j)th element of A is referenced by col_j[i]. *
* *
    ***************************************************************************
#define DENSE_COL(A,j) ((A->data)[j])
```


10.3.2.3 DenseMat Functions

The following functions for Densemat matrices are available in the DENSE package. For full details, see the file dense.h.

- DenseAllocMat: allocation of a DenseMat matrix
- DenseAllocPiv: allocation of a pivot array for use with DenseFactor/DenseBacksolve
- DenseFactor: LU factorization with partial pivoting
- DenseBacksolve: solution of $A x=b$ using LU factorization
- DenseZero: load a matrix with zeros
- DenseCopy: copy one matrix to another
- DenseScale: scale a matrix by a scalar
- DenseAddI: increment a matrix by the identity matrix
- DenseFreeMat: free memory for a DenseMat matrix
- DenseFreePiv: free memory for a pivot array
- DensePrint: print a DenseMat matrix to standard output

10.3.2.4 Small Dense Matrix Functions

```
/******************************************************************
    *
        *
    * Function : denalloc *
    * Usage : real **a; *
    * a = denalloc(n); *
    * if (a == NULL) ... memory request failed *
    *-----------------------------------------------------------------------
    * denalloc(n) allocates storage for an n by n dense matrix. It *
    * returns a pointer to the newly allocated storage if *
    * successful. If the memory request cannot be satisfied, then *
    * denalloc returns NULL. The underlying type of the dense matrix *
    * returned is real **. If we allocate a dense matrix real **a by *
    * a = denalloc(n), then a[j][i] references the (i,j)th element *
    * of the matrix a, 0<= i,j<= n-1, and a[j] is a pointer to the *
    * first element in the jth column of a. The location a[0] *
    * contains a pointer to n^2 contiguous locations which contain *
    * the elements of a.
*
        *
real **denalloc(integer n);
```



```
integer *denallocpiv(integer n);
```

| * | | |
| :---: | :---: | :---: |
| | * Function : gefa | * |
| | * Usage : integer ier; | |
| | * ier $=$ gefa(a,n,p); | * |
| * | * if (ier > 0) ... zero element encountered during | * |
| | * the factorization | * |
| | gefa (a, n, p) factors the n by n dense matrix a. It overwrites | * |
| | * the elements of a with its LU factors and keeps track of the | * |
| | * pivot rows chosen in the pivot array p. | |
| | | |
| | A successful LU factorization leaves the matrix a and the | * |
| | pivot array p with the following information: | |
| | | |
| | * (1) $\mathrm{p}[\mathrm{k}]$ contains the row number of the pivot element chosen | * |
| | * at the beginning of elimination step $\mathrm{k}, \mathrm{k}=0,1, \ldots, \mathrm{n}-1$. | |
| | | * |
| | * (2) If the unique LU factorization of a is given by $\mathrm{Pa}=\mathrm{LU}$, | * |
| | * where P is a permutation matrix, L is a lower triangular | * |
| | matrix with all 1's on the diagonal, and U is an upper | |

void gesl(real **a, integer n, integer *p, real *b);

```
/********************************************************************
    *
    * Function : denzero *
    * Usage : denzero(a,n); *
    *------------------------------------------------------------------
    * denzero(a,n) sets all the elements of the n by n dense matrix *
    * a to be 0.0.
    * *
    ******************************************************************/
```

void denzero(real **a, integer n);

void dencopy (real **a, real **b, integer n);

```
\(/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
    * *
    * Function : denscale
*
    * Usage : denscale(c,a,n); *
```



```
* denscale(c,a,n) scales every element in the n by n dense *
* matrix a by c. *
*
*
**************************************************************************
void denscale(real c, real **a, integer n);
/*********************************************************************
    * *
    * Function : denaddI *
    * Usage : denaddI(a,n); *
    *---------------------------------------------------------------------*
    * denaddI(a,n) increments the n by n dense matrix a by the *
    * identity matrix. *
    * *
    ********************************************************************/
void denaddI(real **a, integer n);
/******************************************************************
    *
        *
    * Function : denfreepiv *
    * Usage : denfreepiv(p); *
    *---------------------------------------------------------------------------
    * denfreepiv(p) frees the pivot array p allocated by *
    * denallocpiv.
*
    ******************************************************************/
void denfreepiv(integer *p);
/******************************************************************
void denfree(real **a);
/******************************************************************
    *
    * Function . denprint *
    * Function : denprint *
    * Usage : denprint(a,n); *
    *-----------------------------------------------------------------------
    * denprint(a,n) prints the n by n dense matrix a to standard *
    * output as it would normally appear on paper. It is intended as *
    * a debugging tool with small values of n. The elements are *
    * printed using the %g option. A blank line is printed before *
    * and after the matrix.
*
    ******************************************************************/
void denprint(real **a, integer n);
```


10.3.3 BAND

The following sections contain documentation and declarations from the header file band.h.

10.3.3.1 Type BandMat

See Figure 3 following the BandMat documentation for a diagram of the BandMat type.


```
typedef struct {
    integer size;
    integer mu, ml, smu;
    real **data;
} *BandMat;
```


10.3.3.2 BandMat Accessor Macros

```
/******************************************************************
    * *
    * Macro : BAND_ELEM *
    * Usage : BAND_ELEM(A,i,j) = a_ij; OR *
    * a_ij = BAND_ELEM(A,i,j); *
    *-----------------------------------------------------------------------
    * BAND_ELEM(A,i,j) references the (i,j)th element of the *
    * N by N band matrix A, where 0 <= i,j <= N-1. The location *
    * (i,j) should further satisfy j-(A->mu) <= i <= j+(A->ml). *
*
```

 \(* / ~\)
 \#define BAND_ELEM(A,i,j) ((A->data)[j][i-j+(A->smu)])

\#define BAND_COL(A,j) (((A->data)[j])+(A->smu))

\#define BAND_COL_ELEM (col_j,i,j) (col_j[i-j])

Figure 3: Diagram of the storage for a band matrix of type BandMat. Here A is an $\mathrm{N} \times \mathrm{N}$ band matrix of type BandMat with upper and lower bandwidths mu and ml , respectively. The rows and columns of A are numbered from 0 to $\mathrm{N}-1$ and the (i, j)th element of A is denoted $\mathrm{A}(\mathrm{i}, \mathrm{j})$. The greyed out areas of the underlying component storage are used by the BandFactor and BandBacksolve routines.

10.3.3.3 BandMat Functions

The following functions for BandMat matrices are available in the BAND package. For full details, see the file band.h.

- BandAllocMat: allocation of a BandMat matrix
- BandAllocPiv: allocation of a pivot array for use with BandFactor/BandBacksolve
- BandFactor: LU factorization with partial pivoting
- BandBacksolve: solution of $A x=b u \operatorname{sing}$ LU factorization
- BandZero: load a matrix with zeros
- BandCopy: copy one matrix to another
- BandScale: scale a matrix by a scalar
- BandAddI: increment a matrix by the identity matrix
- BandFreeMat: free memory for a BandMat matrix
- BandFreePiv: free memory for a pivot array
- BandPrint: print a BandMat matrix to standard output

10.3.3.4 Small Band Matrix Functions


```
* we allocate a band matrix A in real **a by
*
* a = bandalloc(n,smu,ml), then a[0] is a pointer to *
* n * (smu + ml + 1) contiguous storage locations and a[j] is a *
* pointer to the uppermost element in the storage for the jth *
* column. The expression a[j][i-j+smu] references the (i,j)th *
* element of A, where 0 <= i,j <= n-1 and j-mu <= i <= j+ml. *
* (The elements a[j][0], a[j][1], ..., a[j][smu-mu-1] are used *
* by gbfa and gbsl.)
*
* *
***************************************************************************
real **bandalloc(integer n, integer smu, integer ml);
```

```
/******************************************************************
    *
    * Function : bandallocpiv *
    * Usage : integer *pivot; *
    * pivot = bandallocpiv(n); *
    * if (pivot == NULL) ... memory request failed *
    *----------------------------------------------------------------**
    * pointer to the first element in the array if successful. It *
    * returns NULL if the memory request could not be satisfied. *
    * *
```

 \(* /\)
 integer *bandallocpiv(integer n);

| | | |
| :---: | :---: | :---: |
| | * | |
| | * Function : gbfa | * |
| | * Usage : integer ier; | |
| | ier $=$ gbfa(a, $\mathrm{n}, \mathrm{mu}, \mathrm{ml}, \mathrm{smu}, \mathrm{p})$; | |
| | if (ier > 0) ... zero element encountered during | |
| | the factorization | |
| | gbfa($\mathrm{a}, \mathrm{n}, \mathrm{mu}, \mathrm{ml}, \mathrm{smu}, \mathrm{p}$) factors the n by n band matrix A (upper | * |
| | and lower bandwidths mu and ml, storage upper bandwidth smu) | |
| | stored in "a". It overwrites the elements of A with the LU | |
| | factors and it keeps track of the pivot rows chosen in the | |
| | pivot array p. | |
| | | |
| | A successful LU factorization leaves a and pivot array p with | |
| | the following information: | |
| | | |
| | (1) $\mathrm{p}[\mathrm{k}]$ contains the row number of the pivot element chosen | |
| | at the beginning of elimination step $\mathrm{k}, \mathrm{k}=0,1, \ldots, \mathrm{n}-1$. | * |
| | | |
| | (2) If the unique LU factorization of A is given by PA = LU, | |
| | where P is a permutation matrix, L is a lower triangular | |
| | matrix with all 1's on the diagonal, and U is an upper | |
| | * triangular matrix, then the upper triangular part of A | |
| | (including its diagonal) contains U and the strictly lower | |
| | triangular part of A contains the multipliers, I-L. | |
| | | * |
| | gbfa returns 0 if successful. Otherwise it encountered a zero | |
| | * diagonal element during the factorization. In this case it | |
| | * returns the column index (numbered from one) at which it | |
| | encountered the zero. | |
| | | |

* IMPORTANT NOTE: Suppose A is a band matrix with upper *
* factor U can have upper bandwidth as big as $\operatorname{MIN}(n-1, m u+m l)$ *
* because of partial pivoting. The lower triangular factor L has *
* lower bandwidth ml. Thus, if A is to be factored and
* backsolved using gbfa and gbsl, then it should be allocated *
* as a = bandalloc ($\mathrm{n}, \mathrm{smu}, \mathrm{ml}$), where $\mathrm{smu}=\operatorname{MIN}(\mathrm{n}-1, \mathrm{mu}+\mathrm{ml})$. The *
* call to gbfa is ier $=\operatorname{gbfa}(\mathrm{a}, \mathrm{n}, \mathrm{mu}, \mathrm{ml}, \mathrm{smu}, \mathrm{p})$. The corresponding *
* call to gbsl is gbsl(a,n,smu,ml,p,b). The user does not need
* to zero the "extra" storage allocated for the purpose of
* factorization. This is handled by the gbfa routine. If A is *
* not going to be factored and backsolved, then it can be *
* allocated as $a=$ bandalloc(n,smu,ml). In either case, all *
* routines in this section use the parameter name smu for a *
* parameter which must be the "storage upper bandwidth" which *
* was passed to bandalloc.
**/
integer gbfa(real $* * a$, integer n, integer mu, integer ml, integer $s m u$, integer *p);
/**
/**
Function : gbsl
Function : gbsl
 * Usage . real *b; *
 * Usage . real *b; *
 * ier = gbfa(a,n,mu,ml,smu,p); *
 * ier = gbfa(a,n,mu,ml,smu,p); *
 * if (ier == 0) gbsl(a,n,smu,ml,p,b); *
 * if (ier == 0) gbsl(a,n,smu,ml,p,b); *
 * gbsl(a,n,smu,ml,p,b) solves the n by n linear system *
 * gbsl(a,n,smu,ml,p,b) solves the n by n linear system *
 * Ax = b, where A is band matrix stored in "a" with storage *
 * Ax = b, where A is band matrix stored in "a" with storage *
 * upper bandwidth smu and lower bandwidth ml. It assumes that A *
 * upper bandwidth smu and lower bandwidth ml. It assumes that A *
 * has been LU factored and the pivot array p has been set by a *
 * has been LU factored and the pivot array p has been set by a *
 * successful call gbfa(a,n,mu,ml,smu,p). The solution x is *
 * successful call gbfa(a,n,mu,ml,smu,p). The solution x is *
 * written into the b array.
 * written into the b array.
**/
**/
void gbsl(real **a, integer n , integer smu, integer ml, integer *p, real *b);

void bandzero(real **a, integer n, integer mu, integer ml, integer smu);

```
/******************************************************************
    * *
    * Function : bandcopy *
    * Usage : bandcopy(a,b,n,a_smu,b_smu,copymu,copyml); *
    *-----------------------------------------------------------------------
    * b(i,j)<- a(i,j), 0<= i,j<= n-1, j-copymu <= i <= j+copyml. *
    *
    ******************************************************************/
```

void bandcopy (real **a, real **b, integer n, integer $a_{-} s m u$, integer $b_{-} s m u$,
integer copymu, integer copyml);
$/ *$
* *
* Function : bandscale
*
* Usage : bandscale(c,a,n,mu,ml); *

* $a(i, j)<-c * a(i, j), \quad 0<=i, j<=n-1, j-m u<=i<=j+m l . \quad$ *
* *
**/
void bandscale(real c, real **a, integer n, integer mu, integer ml,
integer smu);
$/ *$
*
* Function : bandaddI *
* Usage : bandaddI (a, n, smu) ; *

* $a(j, j)<-a(j, j)+1.0, \quad 0<=j<=n-1 . \quad$ *
* *
$* / ~$
void bandaddI(real **a, integer n, integer smu);
$/ *$
* *
* Function : bandfreepiv *
* Usage : bandfreepiv(p); *
* bandfreepiv(p) frees the pivot array p allocated by *
* bandallocpiv. *
* *
$* / ~$
void bandfreepiv(integer *p);

void bandfree(real **a);
$/ * ~$
* *
* Function : bandprint *
* Usage : bandprint(a,n,mu,ml,smu); *

* bandprint(a,n,mu,ml,smu) prints the n by n band matrix stored *
* in a (with upper bandwidth mu and lower bandwidth ml) to *

```
* standard output as it would normally appear on paper. It is *
* intended as a debugging tool with small values of n. The *
* elements are printed using the %g option. A blank line is *
* printed before and after the matrix.
* *
**************************************************************************
```

void bandprint(real **a, integer n , integer mu , integer ml , integer smu);

10.3.4 SPGMR

The SPGMR package, in the files spgmr.h, spgmr.c, includes an implementation of the scaled preconditioned GMRES method. A separate code module, iterativ.h and iterativ.c, contains auxiliary functions that support SPGMR, and also other Krylov solvers to be added later. For full details, including usage instructions, see the files spgmr.h and iterativ.h.

The following functions are available in the SPGMR package:

- SpgmrMalloc: allocation of memory for SpgmrSolve
- SpgmrSolve: solution of $A x=b$ by the SPGMR method
- SpgmrFree: free memory allocated by SpgmrMalloc

The following functions are available in the support package iterativ.h, iterativ.c:

- ModifiedGS: performs modified Gram-Schmidt procedure
- ClassicalGS: performs classical Gram-Schmidt procedure
- QRfact: performs QR factorization of Hessenberg matrix
- QRsol: solves a least squares problem with a Hessenberg matrix factored by QRfact

References

[1] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE, a Variable-Coefficient ODE Solver, SIAM J. Sci. Stat. Comput., 10 (1989), pp. 1038-1051.
[2] P. N. Brown and A. C. Hindmarsh, Reduced Storage Matrix Methods in Stiff ODE Systems, J. Appl. Math. \& Comp. 31 (1989), pp. 40-91.
[3] George D. Byrne, Pragmatic Experiments with Krylov Methods in the Stiff ODE Setting, in Computational Ordinary Differential Equations, J. R. Cash and I. Gladwell (Eds.), Oxford University Press, Oxford, 1992, pp. 323-356.
[4] Krishnan Radhakrishnan and Alan C. Hindmarsh, Discription and Use of LSODE, the Livermore Solver for Ordinary Differential Equations, NASA Reference Publication 1327, 1993, and LLNL Report UCRL-ID-113855, March 1994.
[5] Y. Saad and M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems, SIAM J. Sci. Stat. Comp. 7 (1986), pp. 856-869.

Index

The authors have tried to provide as useful an index as possible. Page numbers in boldface are in Section 10, the Reference Guide. These entries point the reader toward the most complete source of information in this user guide for a given item. If an item with a single bold page number citation does not appear on the specified page, please check the previous page.
abstol $7,13,20,49$
ADAMS 48
Adams-Moulton method 1, 2
ATOL 2, 20
BAND linear solver 31, 78-86
band matrix functions
large matrix $\mathbf{8 2}$
small matrix $\mathbf{8 2 - 8 6}$
band matrix macros $\mathbf{8 0}$
See also BAND_ELEM, BAND_COL, BAND_COL_ELEM
band solver sample program
code cvbx.c $15-20$
explanation of $20-21$
output 21
problem solved by 15
band.h 20, 31, 78
BAND_COL 20, 21, 35, 36, 80
BAND_COL_ELEM 20, 21, 35, 36, 80
BAND_ELEM $35,36,80$
BAND_LIW 36, 59
BAND_LRW 36,59
BAND_NJE $20,36,59$
BandMat 20, 31, 35, 36, 80
BDF 13, 20, 30, 48
BDF method 1,2
bjac 35, 36, 57
block-diagonal preconditioner 31
BOTH 37

ClassicalGS 86

CVBand $6,7,8,20,21,33,35,57$
CVBAND linear solver 56-59
integer size requirement 40

Jacobian approximation used by $35-36$
memory requirements 36
optional outputs 36
selection of 35
cvband.h 20, 56
CVBandDQJac 35, 36
CVBandJacFn 35, 36, 58
cvbx.c 15, 20, 21
CVDense $6,7,8,13,33,34,54$
CVDENSE linear solver 54-56
integer size requirement 40
Jacobian approximation used by $33-34$
memory requirements 34
optional outputs 34
selection of 33
cvdense.h 12, 54
CVDenseDQJac 33, 34
CVDenseJacFn 33, 34, 55
CVDiag 6, 7, 33, 36, 59
CVDIAG linear solver 59
integer size requirement 40
Jacobian approximation used by 36
memory requirements 36
optional outputs 36
selection of 36
cvdiag.h 59
cvdx.c 14
cvkx.c 31
CVode $6,7,8,13,51$
return values 51
CVODE
brief description of 1
linear system solved by 2
memory requirements 8
motivation for writing in C 1
nonlinear system solved by 2
ODE system solved by 1
organization different from VODE,
VODPK 1
planned multiprocessor extension of 1,44
relationship to VODE, VODPK 1
CVODE linear solvers
built on generic solvers 33
description of 33
implementation details 42
list of 42
selecting one 33
See also CVDENSE, CVBAND, CVDIAG,
CVSPGMR linear solver
cvode.c 42
cvode.h $12,42,47$
cvode_mem 7, 51, 52, 54, 57, 59, 61
CVodeDky 8, 52
return values $\mathbf{5 2}$
CVodeFree 6, 13, 52
CVodeMalloc $6,6-7,8,13,33,35,36,37,38$, 49
CVSpgmr $6,7,8,30,31,33,37,38,61$
CVSPGMR linear solver 60-64
integer size requirement 40
memory requirements 38
optional inputs 37
optional outputs 38
preconditioner setup routine 38
preconditioner solve routine 38
selection of 37
cvspgmr.c 44
cvspgmr.h 30,60
CVSpgmrPrecondFn 38, 62
CVSpgmrPSolveFn 38, 64
delt $30,37,38,61$
delta 38, 64
demonstration programs 41
DENSE linear solver 31, 72-77
dense matrix functions
large matrix 74
small matrix $31,75-\mathbf{7 7}$
dense matrix macros 73-74
See also DENSE_ELEM, DENSE_COL
dense solver sample program
code cvdx.c 9-12
explanation of $12-14$
output 14
problem solved by 9
dense.h 12, 31, 72
DENSE_COL 34, 74
DENSE_ELEM 12, 14, 34, 74
DENSE_LIW 34, 56

DENSE_LRW 34, 56
DENSE_NJE 12, 13, 34, 56
DenseMat 12, 14, 31, 34, 73
DIAG_LIW 36, 59
DIAG_LRW 36, 59
difference quotient Jacobian
See Jacobian approximation function
direct demonstration program 41
djac 33, 34, 54
dky 52
errfp 7, 49
error control 2
error reporting 8
error tolerances
advice on setting 2
See also ATOL, RTOL
error weight vector 2
ewt 55, 58, 62, 64
f $8,13,14,20,21,31,49,55,58$
f_data $8,13,20,48,49,55,58$
FUNCTIONAL 48
fy $55,58,62,64$
gamma $\mathbf{3 8}, \mathbf{6 2 , 6 4}$
generic linear solvers $6,64-65$
use in CVODE 42-44
See also DENSE, BAND, SPGMR
linear solver
generic vector package
See VECTOR package
GMRES method 2, 33, 37
Gram-Schmidt procedure 30, 37, 41
gstype 37,38 , 61
h 55, 58, 62
H0 53
HCUR 53
header files 6
HMAX 53
HMIN 53
HU 53
initial value problem 1
integer 6, 12, 39, 40, 44
size of 40
interpolated output 7,8
iopt $7,8,13,34,36,38,49,53$
itask 7, 51
iter 7, 49
iterativ.c 86
iterativ.h $30,37,86$
itol 7, 49

J 14, 21, 34, 35, 55, 58
Jac 4, 8, 13, 14, 20, 21
jac_data $13,20,34,35,54,55,57,58$
Jacobian approximation routine
band, difference quotient 35
band, user-supplied 35-36
dense, difference quotient 33
dense, user-supplied 34
See also CVDenseJacFn, CVBandJacFn
jcur 31
jcurPtr 31, 62
jok 31, 38, 62
k 52
Krylov demonstration program 41
Krylov solver sample program
code cvkx.c $22-30$
explanation of $30-31$
output 32
problem solved by 22
1_max 38
LEFT 37, 38
LENIW 53
LENRW 53
linear multistep formula 2
linear solver
need for in CVODE 2
See also generic, CVODE linear solvers
1lnlmath.c 39, 44
1lnlmath.h 6, 30
1lnltyps.h $12,39,40,44$
1mm 7, 49
local error test 2
1r 38, 64
LSODE 1
machEnv 13, 49
macros (accessor)
BandMat

See band matrix macros DenseMat

See dense matrix macros
N_Vector
See vector macros
user-defined $12,13,14,20,31$
matrix types
See DenseMat, BandMat
maxl 30, 37, 38, 61
MAXORD 53
memory allocation 6,7
mlower $35,36,40,57,58$
ModifiedGS 86
mupper $35,36,40,57,58$
MX 15,20
MXHNIL 53
MXSTEP 53
MY 15, 20, 21
N $34,36,38,40,48,49,55,58,62,64$
N_VDATA 20, 31, 67
N_Vector $4,7,12,13,14,20,31,44,64,66$
N_VFree 4, 13, 21, 68
N_VIth 12, 14, 67
N_VNew 4, 13, 68
NCFN 53
NEQ 13, 20
NETF 53
NEWTON 13, 20, 30, 48
Newton matrix 2, 31
NFE 53
nfePtr 55, 58, 62, 64
nje 13
NNI 53
NONE 37
NORMAL $13,31,48$
notational issues 3
NSETUPS 36, 53
NST 53

ONE_STEP 48
OPT_SIZE 13, 53
optIn 7,49
optional inputs and outputs $7-8,37,49,52-$ $53,55-56,58-59,64$

P_data $37,38, \mathbf{6 1}, \mathbf{6 2 ,} \mathbf{6 4}$
precision 39 - 40
Precond 4, 8, 30, 31, 41
precond $37,38,61$
preconditioning
advice on 37,42
setup and solve phases 42
See also CVSpgmrPrecondFn, CVSpgmrPSolveFn
pretype $7,30,37,38,61$
PrintFinalStats 13, 20, 21
PSolve 4, $8,30,31$
psolve $37,38,61$
QCUR 53
QRfact 86
QRsol 86
QU 53
r 38, 64
RCONST 39, 40
real $6,12,30,39,40,44$
reference guide 3, 47 - $\mathbf{8 6}$
reltol 13, 20, 49
RhsFn 48
RIGHT 37, 38
ropt $7,8,13,49,53$
RPowerR 39
RSqrt 39
RTOL 2
SetIC 20
SPGMR linear solver 2, 38, 86
spgmr.c 44, 86
spgmr.h 86
SPGMR_LIW 38, 64
SPGMR_LRW 38, 64
SPGMR_NCFL 38, 64
SPGMR_NLI 38, 64
SPGMR_NPE 38, 64
SPGMR_NPS 38, 64
SpgmrFree 86
SpgmrMalloc 86
SpgmrSolve 86
SQR 30
SS 7, 20, 48
stiff system 1,2
SUCCESS 13, 51

SV 7, 13, 48
t 7, 13, 48, 51, 52, 55, 58, 62, 64
t0 7,49
T0 20
T1 20
TCUR 53
tolerances
See error tolerances
TOLSF 53
tout $7,13,21,51$
uround 55, 58, 62
user-supplied functions 8
See also f, Jac, Precond, PSolve
user-supplied Jacobian
See Jacobian approximation function
vector kernels 46, 67-72
vector macros 66-67
See also N_VIth, N_VDATA
VECTOR package 44, 65-72
vector type $4,6,44,66$
vector.h $6,12,20,65$
VODE 1
VODPK 1
workspace 8
WRMS norm 2
y $4,13,14,48,55,58,62,64$
y0 7,49
ydot 14, 48
yout 7,51
z 38,64

[^0]: typedef int (*CVSpgmrPrecondFn)(integer N, real t, N_{-}Vector $y, N_{-} V e c t o r ~ f y$, bool jok, bool *jcurPtr, real gamma, N_Vector ewt, real h, real uround, long int *nfePtr, void *P_data, N_Vector vtemp1, N_Vector vtemp2, N_Vector vtemp3);

